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REDUCIBILITY, MULTIBASIC EXPANSION AND

INTEGRAL REPRESENTATION FOR BASIC APPELL

FUNCTIONS

Bhaskar Srivastava*

Abstract. We give bibasic expansion for basic Appell functions Φ(1)

and Φ(2), and their integral representations. We also give a continued

fraction representation for Φ(2).

1. Introduction

The basic analogue of Appell’s hypergeometric functions of two vari-

ables were first defined and studied by F.H. Jackson [6, 7]. R.P. Agarwal

[1, 2] also studied these functions and gave some general identities in-

volving these functions. G.E. Andrews [3] also studied these functions

and showed that the first of the Appell series Φ(1) can be reduced to a

series 3ϕ2 series.

We defined and considered bibasic Appell series in our paper [10].

This is a new approach. In another paper [11] we have summation

formulae and continued fraction representation of the bibasic Appell

functions.

In this paper we give a bibasic expansion for Appell functions Φ(1)

and Φ(2). We also give integral representation for these functions.

By using certain transformations we have reduced the Appell func-

tions to a 2ϕ1 series. We then give a relation between Φ(2) and Φ(3)

series and some summation results. We have also given a continued

fraction representation for Φ(2).
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132 B. SRIVASTAVA

We shall use the following usual basic hypergeometric notations: For

|qk| < 1,

(a; qk)n = (1 − a)(1 − aqk) . . . (1 − aqk(n−1)), n ≥ 1

(a; qk)0 = 1,

(a; qk)∞ = Π∞

j=0(1 − aqkj),

(a1, a2, · · · , am; qk)n = (a1; q
k)n(a2; q

k)n · · · (am; qk)n,

(a; q)n = (a)n,

φ

[

a1, · · · , ar : c1,1, · · · , c1,r1 : · · · : cm,1, · · · , cm,rm

b1, · · · , bs : e1,1, · · · , e1,s1 : · · · : em,1, · · · , em,sm

; q, q1, · · · , qm; z

]

=

∞
∑

n=0

(

(a1, · · · , ar; q)n

(q, b1, · · · , bs; q)n
zn

[

(−1)nq
n2

−n
2

]1+s−r

× Πm
j=1

(cj,1, · · · , cj,rj
; qj)n

(ej,1, · · · , ej,sj
; qj)n

[

(−1)nq
n
2
−n
2

]sj−rj
)

,

AϕA−1 [a1, a2, · · · , aA; b1, b2 · · · , bA−1; q1, z]

=
∞

∑

n=0

(a1; q1)n · · · (aA; q1)nz
n

(b1; q1)n · · · (bA−1; q1)n(q1; q1)n
, |z| < 1.

2. Basic Appell series

The four basic Appell series defined by Jackson [6] are

Φ(1)
[

a; b, b′; c; x, y
]

=
∞

∑

m=0

∞
∑

n=0

(a)m+n(b)m(b′)nxmyn

(q)m(q)n(c)m+n
,

Φ(2)
[

a; b, b′; c, c′; x, y
]

=
∞

∑

m=0

∞
∑

n=0

(a)m+n(b)m(b′)nx
myn

(q)m(q)n(c)m(c′)n
,
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Φ(3)
[

a; a′; b, b′; c; x, y
]

=
∞

∑

m=0

∞
∑

n=0

(a)m(a′)n(b)m(b′)nx
myn

(q)m(q)n(c)m+n
,

Φ(4)
[

a, b; c, c′; x, y
]

=
∞

∑

m=0

∞
∑

n=0

(a)m+n(b)m+nxmyn

(q)m(q)n(c)m(c′)n

.

3. Reducibility as simple basic hypergeometric series

The double series defining Appell functions can be written as a sim-

ple series containing basic hypergeometric series. These will be used

later in giving summation formulae.

(1) Φ(1)
[

a; b, b′; c; x, y
]

=
∞

∑

m=0

(a)m(b)m

(q)m(c)m
2ϕ1

[

aqm, b′; cqm; y
]

xm.

(2) Φ(2)
[

a; b, b′; c, c′; x, y
]

=

∞
∑

m=0

(a)m(b)m

(q)m(c)m
2ϕ1

[

aqm, b′; c′; y
]

xm.

(3) Φ(3)
[

a, a′; b, b′; c; x, y
]

=
∞

∑

m=0

(a)m(b)m

(q)m(c)m
2ϕ1

[

a′, b′; cqm; y
]

xm.

(4) Φ(4)
[

a; b; c, c′; x, y
]

=
∞

∑

m=0

(a)m(b)m

(q)m(c)m
2ϕ1

[

aqm, bqm; c′; y
]

xm.

From this representation the Appell function can be written in q-

analogue of Gauss’ series :

Φ(1)
[

a, b, b′; c; x, 0
]

= Φ(1)
[

a; b, 1; c; x, y
]

= 2ϕ1

[

a, b; c; x
]

.

Φ(1)
[

a, b, b′; c; 0, y
]

= Φ(1)
[

a; 1, b′; c; x, y
]

= 2ϕ1

[

a, b′; c; y
]

.
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Φ(2)
[

a; b, b′; c, c′; x, 0
]

= Φ(2)
[

a; b, 1; c, c′; x, y
]

= 2ϕ1

[

a, b; c; x
]

.

Φ(2)
[

a; b, b′; c, c′; 0, y
]

= Φ(2)
[

a; 1, b′; c, c′; x, y
]

= 2ϕ1

[

a, b′; c; y
]

.

Φ(3)
[

a, a′; b, b′; c; x, 0
]

= Φ(3)
[

a, 1; b, b′; x, y
]

= Φ(3)
[

a, a′; b, 1; c; x, y
]

= 2ϕ1

[

a, b; c; x
]

Φ(3)
[

a, a′; b, b′; c; 0, y
]

= Φ(3)
[

1, a′; b, b′; c; x, y
]

= Φ(3)
[

a, a′; 1, b′; c; x, y
]

= 2ϕ1

[

a, b; c; x
]

.

Φ(4)
[

a; b, b′; c, c′; x, 0
]

= 2ϕ1

[

a, b; c; x
]

.

Φ(4)
[

a; b; c, c′; 0, y
]

= 2ϕ1

[

a, b; c′; x
]

.

4. Transformations

We have transformed the q-Appell functions defined by (1), (2),

(3) and (4) by using Heine’s transformation [5, p.9, (1.4.1)], Heine’s

q-analogue of Eulers transformation [5, p. 10, (1.4.3)], Jackson’s q-

analogue of Pfaff-Kummer’s transformation [5, p.11, (1.5.4)]

Φ(1)
[

a; b, b′; c; x, y
]

=

∞
∑

m=0

(a)m(b)mxm(b′)∞(ayqm)∞
(q)m(c)m(cqm)∞(y)∞

2ϕ1

[

cqm/b′, y; b′; aqmy
]

=
∞

∑

m=0

(a)m(b)mxm(aqm)∞(b′y)∞
(q)m(c)m(cqm)∞(y)∞

2ϕ1

[

c/a, y; aqm; b′y
]

=
∞

∑

m=0

(a)m(b)mxm(aqmy)∞
(q)m(c)m(y)∞

2ϕ2

[

aqm, cqm/b′; cqm, aqmy; b′y
]

.

Φ(2)
[

a; b, b′; c, c′; x, y
]
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=
∞

∑

m=0

(a)m(b)mxm(b′)∞(ayqm)∞
(q)m(c)m(c′)∞(y)∞

2ϕ1

[

c′/b′, y; ayqm; b′
]

=
∞

∑

m=0

(a)m(b)mxm(ab′yqm/c′)∞
(q)m(c)m(y)∞

2ϕ1

[

c′q−m/a, c′/b′; c′; ab′yqm/c′
]

=
∞

∑

m=0

(a)m(b)mxm(ayqm)∞
(q)m(c)m(y)∞

2ϕ2

[

aqm, c′/b′; c′, ayqm; b′y
]

.

Φ(3)
[

a, a′; b, b′; c; x, y
]

(5)

=

∞
∑

m=0

(a)m(b)mxm(a′y)∞(b′)∞
(q)m(c)m(cqm)∞(y)∞

2ϕ1

[

c′qm/b′, y; ay; b′
]

=
∞

∑

m=0

(a)m(b)mxm(a′b′yq−m/c)∞
(q)m(c)m(y)∞

2ϕ1

[

cqm/a′, c′qm/b′; cqm; a′b′yq−m/c
]

=
∞

∑

m=0

(a)m(b)mxm(a′y)∞
(q)m(c)m(y)∞

2ϕ2

[

a′, cqm/b′; cqm, a′y; b′y
]

.

Φ(4)
[

a; b; c, c′; x, y
]

=
∞

∑

m=0

(a)m(b)mxm(bqm)∞(ayqm)∞
(q)m(c)m(c′)∞(y)∞

2ϕ1

[

c′q−m/b, y; ayqm; bqm
]

=

∞
∑

m=0

(a)m(b)mxm(abyq2m/c′)∞
(q)m(c)m(y)∞

2ϕ1

[

c′q−m/a, c′q−m/b; c′; abyq2m/c′
]

=
∞

∑

m=0

(a)m(b)mxm(abyqm)∞
(q)m(c)m(y)∞

2ϕ2

[

aqm, c′q−m/b; c′; ayqm; b′yqm
]

.

5. Multibasic expansions

We shall give multibasic expansion for the q-Appell functions. We

use the summation formula [5, p 71, (3.6.7)] and [9, Lemma 10, p. 57],
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to have the bibasic expansion formula

n
∑

k=0

(1 − apkqk)(1 − bpkq−k)(a, b; p)k(c, a/bc; q)kq
k

(1 − a)(1 − b)(q, aq/b; q)k(ap/c, bcp; p)k

∞
∑

m=0

αm+k

(6) =
∞

∑

m=0

(ap, bp; p)m(cq, aq/bc; q)m

(ap/c, bcp; p)m(q, aq/b; q)m
αm.

Corollary 5.1. Taking a = 0, q → q2 and p = q in (6), we have

∞
∑

k=0

(1 − bq−k)(b; q)k(c; q
2)kq

2k

(1 − b)(q2, q2)k(bcq; q)k

∞
∑

m=0

αm+k

=
∞

∑

m=0

(bq; q)n(cq
2; q2)n

(q2 : q2)n(bcq; q)n
αn.(7)

Corollary 5.2. Taking a = 0, q → q3 and p = q in (6), we have

∞
∑

k=0

(1 − bq−2k)(b; q)k(c; q
3)kq

3k

(1 − b)(q3, q3)k(bcq; q)k

∞
∑

m=0

αm+k

=
∞

∑

m=0

(bq; q)n(cq
3; q3)n

(q3; q3)n(bcq; q)n

αn.(8)

Theorem 5.3. The multibasic expansion of Φ(1):

Φ(1)
[

a; b, b′; c; x, y
]

=

∞
∑

k=0

(1 − b)(1 − xq−2k−1)(c/a, x, y; q)k(aq3)k

(1 − xqk−1)(1 − bq3k)(q, bx, b′y; q)n

× φ

[

q, cq−k/a, yqk : q3k+3

qk+1, b′yqk : bq3k+3 ; q, q3 : a

]

Proof. Putting k = 1 in Theorem 1 of Srivastava [10, p. 31], we have

Φ(1)
[

a; b, b′; c; x, y; q
]

=
(a)∞(bx)∞(b′y)∞
(c)∞(x)∞(y)∞

3ϕ2

[

c/a, x, y; bx, by; q; a
]

.(9)
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Take b = x/y, c = b and αn = (c/a;q)n(y;q)n(q3;q3)nan

(q;q)n(b′y;q)n(bq3;q3)n
in (8) of Corollary

5.2 we have the right-side

= Φ(1)
[

a; b, b′; c; x, y
]

and the left-side

=

∞
∑

k=0

(1 − xq−2k−1)(x/q; q)k(b; q
3)kq

3k

(1 − x/q)(q3, q3)k(bx; q)k

×
∞

∑

m=0

(c/a; q)m+k(y; q)m+k(q
3; q3)m+ka

m+k

(q; q)m+k(b′y; q)m+k(bq3; q3)m+k

=

∞
∑

k=0

(1 − xq−2k−1)(x; q)k−1(b; q
3)kq

3k

(q3, q3)k(bx; q)k

×
∞

∑

m=0

(c/a; q)k(cq
−k/a : q)m(y; q)k(yqk; q)m(q3; q3)k(q

3k+3; q3)mam+k

(q; q)k(qk+1 : q)m(b′y; q)k(b′yqk; q)m(bq3; q3)k(bq3k+3; q3)m

=

∞
∑

k=0

(1 − b)(1 − xq−2k−1)(c/a, x, y; q)k(aq3)k

(1 − xqk−1)(1 − bq3k)(q, bx, b′y; q)n

×φ

[

q, cq−k/a, yqk : q3k+3

qk+1, b′yqk : bq3k+3 ; q, q3 : a

]

,

as desired.

Theorem 5.4. The multibasic expansion of Φ(2):

Φ(2)
[

a; b, b′; c, b′; x, y
]

=
(ay)∞
(yq)∞

∞
∑

k=0

(1 − y)(1 − aq−k−1)(a, b; q)k

(1 − yq2k)(1 − aqk−1)(q, ay, c; q)k

× φ

[

q, bqk : q2k+2

qk+1, cqk : yq2k+2 ; q, q3 : x

]

.

Proof. Take b = a/q, c = y and αn = (b;q)n(q2;q2)nxn

(q;q)n(c;q)n(yq2;q2)n
in (7) of

Corollary 5.1 and using (2) after a little simplification we have the

theorem.
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6. Integral representation

Using the definition of q-integral, we write Φ(1) and Φ(2) as q-integrals.

Thomae and Jackson [5, p. 19, (1.11.1)] defined q-integral by

(10)

∫ 1

0

f(t)dqt = (1 − q)
∞

∑

n=0

f(qn)qn.

Taking f(t) = tx−1(tq; q)∞ , we have

∫ 1

0

tx−1(tq; q)∞dqt = (1 − q)
∞

∑

n=0

(qn+1; q)∞qnx

= (1 − q)(q; q)∞

∞
∑

n=0

qnx

(q; q)n

=
(1 − q)(q; q)∞

(qx; q)∞
.

That is,

(11)
1

(qx; q)∞
=

(1 − q)−1

(q; q)∞

∫ 1

0

tx−1(tq; q)∞dqt.

Theorem 6.1.

Φ(1)
[

a; 0, b′; c; qx, y
]

=
(1 − q)−1(a)∞

(c)∞(q)∞

∫ 1

0

tx−1(ct)∞(tq)∞
(at)∞

Φ(1)
[

at; 0, b′; ct; 0, y
]

dqt

Proof. Putting b = 0 in (9) we have

Φ(1)
[

a; 0, b′; c; x, y
]

=
(a)∞(b′y)∞

(c)∞(x)∞(y)∞

∞
∑

m=0

(c/a)m(x)m(y)mam

(q)m(b′y)m

=
(a)∞(b′y)∞
(c)∞(y)∞

∞
∑

m=0

(c/a)m(y)mam

(q)m(b′y)m(xqm)∞
.
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Writing qx for x, we have

Φ(1)
[

a; 0, b′; c; qx, y
]

=
(a)∞(b′y)∞
(c)∞(y)∞

∞
∑

m=0

(c/a)m(y)mam

(q)m(b′y)m

1

(qm+x; q)∞
.

By (11), we have

Φ(1)
[

a; 0, b′; c; qx, y
]

=
(1 − q)−1(a)∞(b′y)∞

(q)∞(c)∞(y)∞

∞
∑

m=0

(c/a)m(y)mam

(q)m(b′y)m

∫ 1

0

tm+x−1(tq; q)∞dqt.

But

Φ(1)
[

a; 0, b′; c; 0, y
]

=
(a)∞(b′y)∞
(c)∞(y)∞

∞
∑

m=0

(c/a)m(y)mam

(q)m(b′y)m
.

By (9),

Φ(1)
[

at; 0, b′; ct; 0, y
]

=
(at)∞(b′y)∞
(ct)∞(y)∞

∞
∑

m=0

(c/a)m(y)m(at)m

(q)m(b′y)m
.

Hence

Φ(1)
[

a; 0, b′; c; qx, y
]

=
(1 − q)−1(a)∞

(c)∞(q)∞

∫ 1

0

tx−1(ct)∞(tq)∞
(at)∞

Φ(1)
[

at; 0, b′; ct; 0, y
]

dqt,

as desired.

Theorem 6.2.

Φ(2)
[

a; y, b′; c, b′; x, y
]

=
(1 − q)−1(qy)∞

(q)∞

∫ 1

0

ty−1(tq; q)∞Φ(2)
[

a; 0, b′; c; b′; xt, y
]

dqt.

Proof. The proof is similar to the proof of Theorem 6.1.
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7. Relation between Φ(2) and Φ(3)

By specializing the parameter we give relation between Φ(2) and Φ(3)

in the following theorem.

Theorem 7.1.

Φ(2)
[

a; b, b′; 0, bb′; x, y
]

=
(ay)∞(b′)∞
(y)∞(a′b′)∞

Φ(3)
[

a, a′; b, y; ab′; x, y
]

.

Proof. Putting c = 0, c′ = bb′ in (2), we have

Φ(2)
[

a; b, b′; 0; bb′; x, y
]

=
∞

∑

m=0

(a)m(b)mxm

(q)m
2ϕ1

[

aqm, b′; bb′; y
]

xm.(12)

Putting y = b′, b′ = y in (5) and then c = ay, a = b, we have

Φ(3)
[

a, b; b, y; ay;x, b′
]

=
(y)∞(a′b′)∞
(ay)∞(b′)∞

∞
∑

m=0

(a)m(b)m

(q)m
2ϕ1

[

aqm, b′; a′b′; y
]

xm.(13)

(12) and (13) give the theorem.

8. Reducibility of Φ(2)

By taking suitable values of the parameter, we express Φ(2) as 2ϕ1

series and also give a summation formula for Φ(2). By expressing Φ(2)

as 2ϕ1 series , we can have different forms for Φ(2) by applying trans-

formation formulae for 2ϕ1 series.

Putting b′ = c′ in (2)

Φ(2)
[

a; b, b′; c, b′; x, y
]

=
∞

∑

m=0

(a)m(b)m

(q)m(c)m
1ϕ0

[

aqm;−; y
]

xm
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=
∞

∑

m=0

(a)m(b)m(aqmy)∞xm

(q)m(c)m(y)∞

(14) =
(ay)∞
(y)∞

∞
∑

m=0

(a)m(b)mxm

(q)m(c)m(ay)m

Putting c = 0, we have

(15) Φ(2)
[

a; b, b′; 0, b′; x, y
]

=
(ay)∞
(y)∞

2ϕ1

[

a, b; ay; x
]

,

which gives the reduction of Φ(2) into q-analogue of Gauss’ series.

Similar result is

(16) Φ(2)
[

a; b, b′; b, 0; x, y
]

=
(ax)∞
(x)∞

2ϕ1

[

a, b′; ax; y
]

.

Taking b = y/x, in (15), we have

Φ(2)
[

a; y/x, b′; 0, b′; x, y
]

=
(ay)∞
(y)∞

2ϕ1

[

a, y/x; ay; y
]

=
(ax)∞
(x)∞

,(17)

which is a summation formulae for

Φ(2)
[

a; y/x, b′; 0, b′; x, y
]

.

9. Continued fraction representation

We have expressed Φ(2) as 2ϕ1 series and with this relation we prove

a three term relation to have the continued fraction representation.

Theorem 9.1.

Φ(2)
[

a; y/x, b′; 0, b′; x, y
]

Φ(2)
[

aq; y/x; b′; 0, b′; x, y
]
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= −ax +
(1 − axq)

−axq + (1−axq2)

Φ(2)
[

aq2; y/x, b′; 0, b′; x, y
]

Φ(2)
[

aq3; y/x; b′; 0, b′; x, y
]

....

Proof. By (17), we have the three term relation

Φ(2)
[

a; y/x, b′; 0, b′; x, y
]

= −axΦ(2)
[

aq; y/x, b′; 0, b′; x, y
]

+ (1 − axq)Φ(2)
[

aq2; y/x, b′; 0, b′; x, y
]

.

This gives

Φ(2)
[

a; y/x, b′; 0, b′; x, y
]

Φ(2)
[

aq; y/x, b′; 0, b′; x, y
] = −ax +

(1 − axq)

Φ(2)
[

aq; y/x, b′; 0, b′; x, y
]

Φ(2)
[

aq2; y/x, b′; 0, b′; x, y
]

.

On iteration, we have the theorem.

Conclusion

Andrews [3] wrote that a large amount is known about ordinary Ap-

pell series, however, the literature of basic Appell series is less extensive.

Slater [8, p. 234] wrote that there appears to be no systematic attempt

to find summation theorems for basic Appell series. This paper may

be helpful in getting more results for basic Appell functions.
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