JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 18, No.2, October 2005

REDUCIBILITY, MULTIBASIC EXPANSION AND INTEGRAL REPRESENTATION FOR BASIC APPELL FUNCTIONS

BHASKAR SRIVASTAVA*

ABSTRACT. We give bibasic expansion for basic Appell functions $\Phi^{(1)}$ and $\Phi^{(2)}$, and their integral representations. We also give a continued fraction representation for $\Phi^{(2)}$.

1. Introduction

The basic analogue of Appell's hypergeometric functions of two variables were first defined and studied by F.H. Jackson [6, 7]. R.P. Agarwal [1, 2] also studied these functions and gave some general identities involving these functions. G.E. Andrews [3] also studied these functions and showed that the first of the Appell series $\Phi^{(1)}$ can be reduced to a series $_{3}\varphi_{2}$ series.

We defined and considered bibasic Appell series in our paper [10]. This is a new approach. In another paper [11] we have summation formulae and continued fraction representation of the bibasic Appell functions.

In this paper we give a bibasic expansion for Appell functions $\Phi^{(1)}$ and $\Phi^{(2)}$. We also give integral representation for these functions.

By using certain transformations we have reduced the Appell functions to a $_2\varphi_1$ series. We then give a relation between $\Phi^{(2)}$ and $\Phi^{(3)}$ series and some summation results. We have also given a continued fraction representation for $\Phi^{(2)}$.

Received by the editors on May 01, 2005.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 33Dxx, 33D50.

Key words and phrases: q-bibasic hypergeometric series, multibasic series.

We shall use the following usual basic hypergeometric notations: For $|q^k| < 1, \label{eq:product}$

$$(a;q^{k})_{n} = (1-a)(1-aq^{k})\dots(1-aq^{k(n-1)}), \quad n \ge 1$$

$$(a;q^{k})_{0} = 1,$$

$$(a;q^{k})_{\infty} = \prod_{j=0}^{\infty}(1-aq^{kj}),$$

$$(a_{1},a_{2},\dots,a_{m};q^{k})_{n} = (a_{1};q^{k})_{n}(a_{2};q^{k})_{n}\dots(a_{m};q^{k})_{n},$$

$$(a;q)_{n} = (a)_{n},$$

$$\begin{split} \phi \left[\begin{array}{l} a_{1}, \cdots, a_{r} : c_{1,1}, \cdots, c_{1,r_{1}} : \cdots : c_{m,1}, \cdots, c_{m,r_{m}} \\ b_{1}, \cdots, b_{s} : e_{1,1}, \cdots, e_{1,s_{1}} : \cdots : e_{m,1}, \cdots, e_{m,s_{m}} \end{array}; q, q_{1}, \cdots, q_{m}; z \right] \\ &= \sum_{n=0}^{\infty} \left(\frac{(a_{1}, \cdots, a_{r}; q)_{n}}{(q, b_{1}, \cdots, b_{s}; q)_{n}} z^{n} \left[(-1)^{n} q^{\frac{n^{2} - n}{2}} \right]^{1 + s - r} \right. \\ &\times \prod_{j=1}^{m} \frac{(c_{j,1}, \cdots, c_{j,r_{j}}; q_{j})_{n}}{(e_{j,1}, \cdots, e_{j,s_{j}}; q_{j})_{n}} \left[(-1)^{n} q^{\frac{n^{2} - n}{2}} \right]^{s_{j} - r_{j}} \right), \\ &A\varphi_{A-1} \left[a_{1}, a_{2}, \cdots, a_{A}; b_{1}, b_{2} \cdots, b_{A-1}; q_{1}, z \right] \\ &= \sum_{n=0}^{\infty} \frac{(a_{1}; q_{1})_{n} \cdots (a_{A}; q_{1})_{n} z^{n}}{(b_{1}; q_{1})_{n} \cdots (b_{A-1}; q_{1})_{n} (q_{1}; q_{1})_{n}}, \qquad |z| < 1. \end{split}$$

2. Basic Appell series

The four basic Appell series defined by Jackson [6] are

$$\Phi^{(1)}\left[a;b,b';c;x,y\right] = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b)_m(b')_n x^m y^n}{(q)_m(q)_n(c)_{m+n}},$$

$$\Phi^{(2)}\left[a;b,b';c,c';x,y\right] = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b)_m(b')_n x^m y^n}{(q)_m(q)_n(c)_m(c')_n},$$

$$\Phi^{(3)}\left[a;a';b,b';c;x,y\right] = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_m(a')_n(b)_m(b')_n x^m y^n}{(q)_m(q)_n(c)_{m+n}},$$
$$\Phi^{(4)}\left[a,b;c,c';x,y\right] = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n} x^m y^n}{(q)_m(q)_n(c)_m(c')_n}.$$

3. Reducibility as simple basic hypergeometric series

The double series defining Appell functions can be written as a simple series containing basic hypergeometric series. These will be used later in giving summation formulae.

(1)
$$\Phi^{(1)}\left[a;b,b';c;x,y\right] = \sum_{m=0}^{\infty} \frac{(a)_m(b)_m}{(q)_m(c)_m} {}_2\varphi_1\left[aq^m,b';cq^m;y\right]x^m.$$

(2)
$$\Phi^{(2)}\left[a;b,b';c,c';x,y\right] = \sum_{m=0}^{\infty} \frac{(a)_m(b)_m}{(q)_m(c)_m} {}_2\varphi_1\left[aq^m,b';c';y\right]x^m.$$

(3)
$$\Phi^{(3)}\left[a,a';b,b';c;x,y\right] = \sum_{m=0}^{\infty} \frac{(a)_m(b)_m}{(q)_m(c)_m} {}_2\varphi_1\left[a',b';cq^m;y\right] x^m.$$

(4)
$$\Phi^{(4)}\left[a;b;c,c';x,y\right] = \sum_{m=0}^{\infty} \frac{(a)_m(b)_m}{(q)_m(c)_m} {}_2\varphi_1\left[aq^m,bq^m;c';y\right]x^m.$$

From this representation the Appell function can be written in q-analogue of Gauss' series :

$$\begin{split} \Phi^{(1)}\left[\ a,b,b';c;x,0\ \right] &= \Phi^{(1)}\left[\ a;b,1;c;x,y\ \right] = {}_2\varphi_1\left[\ a,b;c;x\ \right]. \\ \Phi^{(1)}\left[\ a,b,b';c;0,y\ \right] &= \Phi^{(1)}\left[\ a;1,b';c;x,y\ \right] = {}_2\varphi_1\left[\ a,b';c;y\ \right]. \end{split}$$

$$\begin{split} \Phi^{(2)}\left[a;b,b';c,c';x,0\right] &= \Phi^{(2)}\left[a;b,1;c,c';x,y\right] = {}_{2}\varphi_{1}\left[a,b;c;x\right].\\ \Phi^{(2)}\left[a;b,b';c,c';0,y\right] &= \Phi^{(2)}\left[a;1,b';c,c';x,y\right] = {}_{2}\varphi_{1}\left[a,b';c;y\right]. \end{split}$$

$$\begin{split} \Phi^{(3)}\left[a, a'; b, b'; c; x, 0\right] &= \Phi^{(3)}\left[a, 1; b, b'; x, y\right] \\ &= \Phi^{(3)}\left[a, a'; b, 1; c; x, y\right] = {}_{2}\varphi_{1}\left[a, b; c; x\right] \\ \Phi^{(3)}\left[a, a'; b, b'; c; 0, y\right] &= \Phi^{(3)}\left[1, a'; b, b'; c; x, y\right] \\ &= \Phi^{(3)}\left[a, a'; 1, b'; c; x, y\right] = {}_{2}\varphi_{1}\left[a, b; c; x\right]. \end{split}$$

$$\Phi^{(4)} \left[a; b, b'; c, c'; x, 0 \right] = {}_{2}\varphi_{1} \left[a, b; c; x \right].$$

$$\Phi^{(4)} \left[a; b; c, c'; 0, y \right] = {}_{2}\varphi_{1} \left[a, b; c'; x \right].$$

4. Transformations

We have transformed the q-Appell functions defined by (1), (2), (3) and (4) by using Heine's transformation [5, p.9, (1.4.1)], Heine's q-analogue of Eulers transformation [5, p. 10, (1.4.3)], Jackson's qanalogue of Pfaff-Kummer's transformation [5, p.11, (1.5.4)]

$$\begin{split} &\Phi^{(1)}\left[a;b,b';c;x,y\right] \\ &= \sum_{m=0}^{\infty} \frac{(a)_m(b)_m x^m(b')_{\infty}(ayq^m)_{\infty}}{(q)_m(c)_m(cq^m)_{\infty}(y)_{\infty}} {}_2\varphi_1\left[cq^m/b',y;b';aq^my\right] \\ &= \sum_{m=0}^{\infty} \frac{(a)_m(b)_m x^m(aq^m)_{\infty}(b'y)_{\infty}}{(q)_m(c)_m(cq^m)_{\infty}(y)_{\infty}} {}_2\varphi_1\left[c/a,y;aq^m;b'y\right] \\ &= \sum_{m=0}^{\infty} \frac{(a)_m(b)_m x^m(aq^my)_{\infty}}{(q)_m(c)_m(y)_{\infty}} {}_2\varphi_2\left[aq^m,cq^m/b';cq^m,aq^my;b'y\right]. \end{split}$$

 $\Phi^{(2)}\left[\ a;b,b';c,c';x,y\ \right]$

$$= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (b')_\infty (ayq^m)_\infty}{(q)_m (c)_m (c')_\infty (y)_\infty} {}_2\varphi_1 \left[c'/b', y; ayq^m; b' \right]$$

$$= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (ab'yq^m/c')_\infty}{(q)_m (c)_m (y)_\infty} {}_2\varphi_1 \left[c'q^{-m}/a, c'/b'; c'; ab'yq^m/c' \right]$$

$$= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (ayq^m)_\infty}{(q)_m (c)_m (y)_\infty} {}_2\varphi_2 \left[aq^m, c'/b'; c', ayq^m; b'y \right].$$

$$(5) \qquad \Phi^{(3)} \left[a, a'; b, b'; c; x, y \right]$$

$$= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (a'y)_\infty (b')_\infty}{(q)_m (c)_m (cq^m)_\infty (y)_\infty} {}_2 \varphi_1 \left[c'q^m / b', y; ay; b' \right]$$

$$= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (a'b'yq^{-m}/c)_\infty}{(q)_m (c)_m (y)_\infty} {}_2 \varphi_1 \left[cq^m / a', c'q^m / b'; cq^m; a'b'yq^{-m}/c \right]$$

$$= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (a'y)_\infty}{(q)_m (c)_m (y)_\infty} {}_2 \varphi_2 \left[a', cq^m / b'; cq^m, a'y; b'y \right].$$

$$\begin{split} &\Phi^{(4)}\left[a;b;c,c';x,y\right] \\ &= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (bq^m)_{\infty} (ayq^m)_{\infty}}{(q)_m (c)_m (c')_{\infty} (y)_{\infty}} {}_2\varphi_1\left[c'q^{-m}/b,y;ayq^m;bq^m\right] \\ &= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (abyq^{2m}/c')_{\infty}}{(q)_m (c)_m (y)_{\infty}} {}_2\varphi_1\left[c'q^{-m}/a,c'q^{-m}/b;c';abyq^{2m}/c'\right] \\ &= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m (abyq^m)_{\infty}}{(q)_m (c)_m (y)_{\infty}} {}_2\varphi_2\left[aq^m,c'q^{-m}/b;c';ayq^m;b'yq^m\right]. \end{split}$$

5. Multibasic expansions

We shall give multibasic expansion for the q-Appell functions. We use the summation formula [5, p 71, (3.6.7)] and [9, Lemma 10, p. 57],

to have the bibasic expansion formula

(6)
$$\sum_{k=0}^{n} \frac{(1-ap^{k}q^{k})(1-bp^{k}q^{-k})(a,b;p)_{k}(c,a/bc;q)_{k}q^{k}}{(1-a)(1-b)(q,aq/b;q)_{k}(ap/c,bcp;p)_{k}} \sum_{m=0}^{\infty} \alpha_{m+k}$$
$$= \sum_{m=0}^{\infty} \frac{(ap,bp;p)_{m}(cq,aq/bc;q)_{m}}{(ap/c,bcp;p)_{m}(q,aq/b;q)_{m}} \alpha_{m}.$$

COROLLARY 5.1. Taking $a = 0, q \rightarrow q^2$ and p = q in (6), we have

(7)
$$\sum_{k=0}^{\infty} \frac{(1-bq^{-k})(b;q)_k(c;q^2)_k q^{2k}}{(1-b)(q^2,q^2)_k (bcq;q)_k} \sum_{m=0}^{\infty} \alpha_{m+k}$$
$$= \sum_{m=0}^{\infty} \frac{(bq;q)_n (cq^2;q^2)_n}{(q^2:q^2)_n (bcq;q)_n} \alpha_n.$$

COROLLARY 5.2. Taking $a = 0, q \rightarrow q^3$ and p = q in (6), we have

(8)
$$\sum_{k=0}^{\infty} \frac{(1-bq^{-2k})(b;q)_k(c;q^3)_k q^{3k}}{(1-b)(q^3,q^3)_k(bcq;q)_k} \sum_{m=0}^{\infty} \alpha_{m+k}$$
$$= \sum_{m=0}^{\infty} \frac{(bq;q)_n(cq^3;q^3)_n}{(q^3;q^3)_n(bcq;q)_n} \alpha_n.$$

Theorem 5.3. The multibasic expansion of $\Phi^{(1)}$:

$$\Phi^{(1)}\left[a;b,b';c;x,y\right] = \sum_{k=0}^{\infty} \frac{(1-b)(1-xq^{-2k-1})(c/a,x,y;q)_k(aq^3)^k}{(1-xq^{k-1})(1-bq^{3k})(q,bx,b'y;q)_n} \\ \times \phi\left[q,cq^{-k}/a,yq^k:q^{3k+3},q,q^3:a\right]$$

Proof. Putting k = 1 in Theorem 1 of Srivastava [10, p. 31], we have

(9)
$$\Phi^{(1)}\left[a;b,b';c;x,y;q\right] = \frac{(a)_{\infty}(bx)_{\infty}(b'y)_{\infty}}{(c)_{\infty}(x)_{\infty}(y)_{\infty}} {}_{3}\varphi_{2}\left[c/a,x,y;bx,by;q;a\right].$$

Take b = x/y, c = b and $\alpha_n = \frac{(c/a;q)_n(y;q)_n(q^3;q^3)_n a^n}{(q;q)_n(b'y;q)_n(bq^3;q^3)_n}$ in (8) of Corollary 5.2 we have the right-side

$$=\Phi^{(1)}\left[\ a;b,b';c;x,y\ \right]$$

and the left-side

$$\begin{split} &= \sum_{k=0}^{\infty} \frac{(1-xq^{-2k-1})(x/q;q)_k(b;q^3)_kq^{3k}}{(1-x/q)(q^3,q^3)_k(bx;q)_k} \\ &\times \sum_{m=0}^{\infty} \frac{(c/a;q)_{m+k}(y;q)_{m+k}(q^3;q^3)_{m+k}a^{m+k}}{(q;q)_{m+k}(b'y;q)_{m+k}(bq^3;q^3)_{m+k}} \\ &= \sum_{k=0}^{\infty} \frac{(1-xq^{-2k-1})(x;q)_{k-1}(b;q^3)_kq^{3k}}{(q^3,q^3)_k(bx;q)_k} \\ &\times \sum_{m=0}^{\infty} \frac{(c/a;q)_k(cq^{-k}/a:q)_m(y;q)_k(yq^k;q)_m(q^3;q^3)_k(q^{3k+3};q^3)_ma^{m+k}}{(q;q)_k(q^{k+1}:q)_m(b'y;q)_k(b'yq^k;q)_m(bq^3;q^3)_k(bq^{3k+3};q^3)_m} \\ &= \sum_{k=0}^{\infty} \frac{(1-b)(1-xq^{-2k-1})(c/a,x,y;q)_k(aq^3)^k}{(1-xq^{k-1})(1-bq^{3k})(q,bx,b'y;q)_n} \\ &\times \phi \left[\begin{array}{c} q, cq^{-k}/a, yq^k: q^{3k+3} \\ q^{k+1}, b'yq^k: bq^{3k+3} \end{array}; q, q^3: a \right], \end{split}$$

as desired.

THEOREM 5.4. The multibasic expansion of $\Phi^{(2)}$:

$$\begin{split} \Phi^{(2)}\left[a;b,b';c,b';x,y\right] &= \frac{(ay)_{\infty}}{(yq)_{\infty}} \sum_{k=0}^{\infty} \frac{(1-y)(1-aq^{-k-1})(a,b;q)_{k}}{(1-yq^{2k})(1-aq^{k-1})(q,ay,c;q)_{k}} \\ &\times \phi \left[q, bq^{k}: q^{2k+2} \\ q^{k+1}, cq^{k}: yq^{2k+2}; q, q^{3}: x\right]. \end{split}$$

Proof. Take b = a/q, c = y and $\alpha_n = \frac{(b;q)_n(q^2;q^2)_n x^n}{(q;q)_n(c;q)_n(yq^2;q^2)_n}$ in (7) of Corollary 5.1 and using (2) after a little simplification we have the theorem.

6. Integral representation

Using the definition of q-integral, we write $\Phi^{(1)}$ and $\Phi^{(2)}$ as q-integrals. Thomae and Jackson [5, p. 19, (1.11.1)] defined q-integral by

(10)
$$\int_0^1 f(t) d_q t = (1-q) \sum_{n=0}^\infty f(q^n) q^n.$$

Taking $f(t)=t^{x-1}(tq;q)_\infty$, we have

$$\int_0^1 t^{x-1}(tq;q)_\infty d_q t = (1-q) \sum_{n=0}^\infty (q^{n+1};q)_\infty q^{nx}$$
$$= (1-q)(q;q)_\infty \sum_{n=0}^\infty \frac{q^{nx}}{(q;q)_n}$$
$$= \frac{(1-q)(q;q)_\infty}{(q^x;q)_\infty}.$$

That is,

(11)
$$\frac{1}{(q^x;q)_{\infty}} = \frac{(1-q)^{-1}}{(q;q)_{\infty}} \int_0^1 t^{x-1} (tq;q)_{\infty} d_q t.$$

THEOREM 6.1.

$$\begin{split} &\Phi^{(1)}\left[\ a;0,b';c;q^{x},y\ \right] \\ &= \frac{(1-q)^{-1}(a)_{\infty}}{(c)_{\infty}(q)_{\infty}} \int_{0}^{1} \frac{t^{x-1}(ct)_{\infty}(tq)_{\infty}}{(at)_{\infty}} \Phi^{(1)}\left[\ at;0,b';ct;0,y\ \right] d_{q}t \end{split}$$

Proof. Putting b = 0 in (9) we have

$$\Phi^{(1)}\left[a;0,b';c;x,y\right] = \frac{(a)_{\infty}(b'y)_{\infty}}{(c)_{\infty}(x)_{\infty}(y)_{\infty}} \sum_{m=0}^{\infty} \frac{(c/a)_m(x)_m(y)_m a^m}{(q)_m(b'y)_m}$$
$$= \frac{(a)_{\infty}(b'y)_{\infty}}{(c)_{\infty}(y)_{\infty}} \sum_{m=0}^{\infty} \frac{(c/a)_m(y)_m a^m}{(q)_m(b'y)_m(xq^m)_{\infty}}.$$

Writing q^x for x, we have

$$\Phi^{(1)}\left[a;0,b';c;q^x,y\right] = \frac{(a)_{\infty}(b'y)_{\infty}}{(c)_{\infty}(y)_{\infty}} \sum_{m=0}^{\infty} \frac{(c/a)_m(y)_m a^m}{(q)_m(b'y)_m} \frac{1}{(q^{m+x};q)_{\infty}}.$$

By (11), we have

$$\begin{split} \Phi^{(1)} &\left[\ a; 0, b'; c; q^x, y \ \right] \\ &= \frac{(1-q)^{-1}(a)_{\infty}(b'y)_{\infty}}{(q)_{\infty}(c)_{\infty}(y)_{\infty}} \sum_{m=0}^{\infty} \frac{(c/a)_m(y)_m a^m}{(q)_m(b'y)_m} \int_0^1 t^{m+x-1}(tq;q)_{\infty} d_q t. \end{split}$$

But

$$\Phi^{(1)}\left[a;0,b';c;0,y\right] = \frac{(a)_{\infty}(b'y)_{\infty}}{(c)_{\infty}(y)_{\infty}} \sum_{m=0}^{\infty} \frac{(c/a)_m(y)_m a^m}{(q)_m(b'y)_m}.$$

By (9),

$$\Phi^{(1)}\left[at;0,b';ct;0,y\right] = \frac{(at)_{\infty}(b'y)_{\infty}}{(ct)_{\infty}(y)_{\infty}} \sum_{m=0}^{\infty} \frac{(c/a)_m(y)_m(at)^m}{(q)_m(b'y)_m}.$$

Hence

$$\Phi^{(1)}\left[a;0,b';c;q^{x},y\right] = \frac{(1-q)^{-1}(a)_{\infty}}{(c)_{\infty}(q)_{\infty}} \int_{0}^{1} \frac{t^{x-1}(ct)_{\infty}(tq)_{\infty}}{(at)_{\infty}} \Phi^{(1)}\left[at;0,b';ct;0,y\right] d_{q}t,$$

as desired.

THEOREM 6.2.

$$\Phi^{(2)}\left[a;y,b';c,b';x,y\right] = \frac{(1-q)^{-1}(q^y)_{\infty}}{(q)_{\infty}} \int_0^1 t^{y-1}(tq;q)_{\infty} \Phi^{(2)}\left[a;0,b';c;b';xt,y\right] d_q t.$$

Proof. The proof is similar to the proof of Theorem 6.1.

7. Relation between $\Phi^{(2)}$ and $\Phi^{(3)}$

By specializing the parameter we give relation between $\Phi^{(2)}$ and $\Phi^{(3)}$ in the following theorem.

THEOREM 7.1.

$$\Phi^{(2)}\left[a;b,b';0,bb';x,y\right] = \frac{(ay)_{\infty}(b')_{\infty}}{(y)_{\infty}(a'b')_{\infty}} \Phi^{(3)}\left[a,a';b,y;ab';x,y\right].$$

Proof. Putting c = 0, c' = bb' in (2), we have

(12)
$$\Phi^{(2)} \left[a; b, b'; 0; bb'; x, y \right] = \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m}{(q)_m} {}_2\varphi_1 \left[aq^m, b'; bb'; y \right] x^m.$$

Putting y = b', b' = y in (5) and then c = ay, a = b, we have

(13)
$$\Phi^{(3)} \left[a, b; b, y; ay; x, b' \right] = \frac{(y)_{\infty}(a'b')_{\infty}}{(ay)_{\infty}(b')_{\infty}} \sum_{m=0}^{\infty} \frac{(a)_m(b)_m}{(q)_m} {}_2\varphi_1 \left[aq^m, b'; a'b'; y \right] x^m.$$

(12) and (13) give the theorem.

8. Reducibility of $\Phi^{(2)}$

By taking suitable values of the parameter, we express $\Phi^{(2)}$ as $_2\varphi_1$ series and also give a summation formula for $\Phi^{(2)}$. By expressing $\Phi^{(2)}$ as $_2\varphi_1$ series, we can have different forms for $\Phi^{(2)}$ by applying transformation formulae for $_2\varphi_1$ series.

Putting b' = c' in (2)

$$\Phi^{(2)}\left[a;b,b';c,b';x,y\right] = \sum_{m=0}^{\infty} \frac{(a)_m(b)_m}{(q)_m(c)_m} {}_1\varphi_0\left[aq^m;-;y\right]x^m$$

(14)
$$= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m (aq^m y)_\infty x^m}{(q)_m (c)_m (y)_\infty}$$
$$= \frac{(ay)_\infty}{(y)_\infty} \sum_{m=0}^{\infty} \frac{(a)_m (b)_m x^m}{(q)_m (c)_m (ay)_m}$$

Putting c = 0, we have

(15)
$$\Phi^{(2)}\left[a;b,b';0,b';x,y\right] = \frac{(ay)_{\infty}}{(y)_{\infty}} {}_{2}\varphi_{1}\left[a,b;ay;x\right],$$

which gives the reduction of $\Phi^{(2)}$ into q-analogue of Gauss' series. Similar result is

(16)
$$\Phi^{(2)}\left[a;b,b';b,0;x,y\right] = \frac{(ax)_{\infty}}{(x)_{\infty}} {}_{2}\varphi_{1}\left[a,b';ax;y\right].$$

Taking b = y/x, in (15), we have

(17)

$$\Phi^{(2)}\left[a;y/x,b';0,b';x,y\right] = \frac{(ay)_{\infty}}{(y)_{\infty}} {}_{2}\varphi_{1}\left[a,y/x;ay;y\right]$$

$$= \frac{(ax)_{\infty}}{(x)_{\infty}},$$

which is a summation formulae for

$$\Phi^{(2)}\left[a;y/x,b';0,b';x,y\right].$$

9. Continued fraction representation

We have expressed $\Phi^{(2)}$ as $_2\varphi_1$ series and with this relation we prove a three term relation to have the continued fraction representation.

Theorem 9.1.

$$\frac{\Phi^{(2)}\left[\ a;y/x,b';0,b';x,y\ \right]}{\Phi^{(2)}\left[\ aq;y/x;b';0,b';x,y\ \right]}$$

$$= -ax + \frac{(1 - axq)}{-axq + \frac{(1 - axq^2)}{\frac{\Phi^{(2)} \left[aq^2; y/x, b'; 0, b'; x, y \right]}{\Phi^{(2)} \left[aq^3; y/x; b'; 0, b'; x, y \right] \dots}}$$

Proof. By (17), we have the three term relation

$$\begin{split} \Phi^{(2)}\left[a;y/x,b';0,b';x,y\right] &= -ax\Phi^{(2)}\left[aq;y/x,b';0,b';x,y\right] \\ &+ (1-axq)\Phi^{(2)}\left[aq^{2};y/x,b';0,b';x,y\right]. \end{split}$$

This gives

$$\frac{\Phi^{(2)}\left[a;y/x,b';0,b';x,y\right]}{\Phi^{(2)}\left[aq;y/x,b';0,b';x,y\right]} = -ax + \frac{(1-axq)}{\frac{\Phi^{(2)}\left[aq;y/x,b';0,b';x,y\right]}{\frac{\Phi^{(2)}\left[aq^{2};y/x,b';0,b';x,y\right]}}.$$

On iteration, we have the theorem.

Conclusion

Andrews [3] wrote that a large amount is known about ordinary Appell series, however, the literature of basic Appell series is less extensive. Slater [8, p. 234] wrote that there appears to be no systematic attempt to find summation theorems for basic Appell series. This paper may be helpful in getting more results for basic Appell functions.

References

- R.P. Agarwal, Some basic hypergeometric identities, Ann. Soc. Sci. Bruxelles 67 (1953), 186–202.
- R.P. Agarwal, Some relations between basic hypergeometric functions of two variables, Rend. Circ. Mat. Palermo 3 (1954), 1–7.
- G.E. Andrews, Summations and transformations for basic Appell series, J. London Math. Soc. 67 (1972), 618–622.

- 4. P. Appell and J. Kampe De Feriet, *Functions Hypergeometriques et Hyperspheriques*, Gauthier villars, Paris, 1926.
- G. Gasper and M. Rahman, *Basic Hypergeometric Series*, Cambridge University Press, Cambridge, 1990.
- F.H. Jackson, On basic double hypergeometric functions, Quart. J. Math. 13 (1942), 69–82.
- F.H. Jackson, Basic double hypergeometric functions, Quart. J. Math. 15 (1944), 49–61.
- 8. L.J. Slater, *Generalized Hypergeometric Functions*, Cambridge University Press, Cambridge, 1966.
- E.D. Rainville, Special Function, Chelsea Publishing Company, Bronx, New York, 1960.
- Bhaskar Srivastava, A note on certain bibasic q-Appell and Lauricella series, Glasnik Matematicki 30 (1955), 29–36.
- 11. Bhaskar Srivastava, Bibasic q-Appell series connected with Ramanujan's continued fractions (preprint).

*

DEPARTMENT OF MATHEMATICS LUCKNOW UNIVERSITY LUCKNOW, INDIA *E-mail*: bhaskarsrivastav@yahoo.com