• Title/Summary/Keyword: barrier performance

Search Result 816, Processing Time 0.028 seconds

Antimicrobial Properties of Wheat Gluten-Chitosan Composite Film in Intermediate-Moisture Food Systems

  • Park, Sang-Kyu;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.133-137
    • /
    • 2006
  • Wheat gluten-chitosan composite film (WGCCF) can prevent moisture migration and enhance the antimicrobial properties of gluten in intermediate-moisture foods like sandwiches. To mimic the structure of actual sandwich-type products we developed multi-layer food models, where moisture content and water activity differ. Water activity gradients direct moisture migration and therefore determine product characteristics and product stability. A 10% wheat gluten film-forming solution was mixed with chitosan film-forming solution (0-3%, w/w) and evaporated to generate WGCCF. Addition of 3% chitosan enhanced the mechanical properties of the film composite, lowered its water vapor permeability, and improved its ability to protect against both, Streptococcus faecalis and Escherichia coli, in a 24 hr sandwich test (reduction of 1.3 and 2.7 log cycles, respectively, compared to controls). Best barrier and antimicrobial performance was found for 3% chitosan WGCCF at pH 5.1. Film of this type may find application as barrier film for intermediate-moisture foods.

Study of Nonvolatile Memory Device with $SiO_2/Si_3N_4$ stacked tunneling oxide (터널링 $SiO_2/Si_3N_4$ 절연막의 적층구조에 따른 비휘발성 메모리 소자의 특성 고찰)

  • Cho, Won-Ju;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.189-190
    • /
    • 2008
  • The electrical characteristics of band-gap engineered tunneling barriers consisting of thin $SiO_2$ and $Si_3N_4$ dielectric layers were investigated. The band structure of stacked tunneling barriers was studied and the effectiveness of these tunneling barriers was compared with that of the conventional tunneling barrier. The band-gap engineered tunneling barriers show the lower operation voltage, faster speed and longer retention time than the conventional $SiO_2$ tunnel barrier. The thickness of each $SiO_2$ and $Si_3N_4$ layer was optimized to improve the performance of non-volatile memory.

  • PDF

Numerical analysis of plasma-sprayed ceramic coatings for high-temperature applications

  • St. Doltsinis, Ioannis;Haller, Kai-Uwe;Handel, Rainer
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.679-702
    • /
    • 1996
  • The finite element method is employed in conjunction with micromechanical modelling in order to assess the performance of ceramic thermal barrier coatings applied to structural components. The study comprises the conditions of the deposition of the coating by plasma spraying as well as the thermal cycling of the coated component, and it addresses particularly turbine blades. They are exposed to high temperature changes strongly influencing the behaviour of the core material and inducing damage in the ceramic material by intense straining. A concept of failure analysis is discussed starting from distributed microcracking in the ceramic material, progressing to the formation of macroscopic crack patterns and examining their potential for propagation across the coating. The theory is in good agreement with experimental observations, and may therefore be utilized in proposing improvements for a delayed initiation of failure, thus increasing the lifetime of components with ceramic thermal barrier coatings.

The Study on the improvement of Characteristics of Permanent Magnet Synchronous Motor for Washing Machine (세탁기용 영구자석 동기전동기의 특성 향상에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.47-53
    • /
    • 2015
  • IPMSM(Insert Permanent Magnet Synchronous Motor) is a very high degree of freedom in the design according to the permanent magnet insertion position. And the performance of IPMSM is affected a lot on barrier shape which determines the magnetic flux path from magnet. Thus the position of permanent magnet and the barrier shape has to be designed by considering both specification and operation condition. In the paper, the permanent magnet and barrier shape which is suitable for direct drive motor of washing machine has been studied. In addition, in order to verify the validity of the study, the test was evaluated by making a prototype motor.

The Evaluation of Geosynthetic Clay Liner as a barrier layer for the Final Cover System in landfill (폐기물 매립지 최종복토 차단층으로서 Geosynthetic Clay Liner 적용성 평가)

  • Lee, Jung-Lan;Moon, Chul-Hwan;Jung, Chan-Kee;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2004
  • One of the most important concern in the design of barrier layer in to protect the water through the landfill. The barrier layer consists of a single compacted clay liner(CCL) or a composite liner with high density polyethylene(HDPE). The construction of barrier layer at the edge of cover system usually has some problems because of steep slope in the landfill. In this study the authors evaluate the geosynthetic clay liner(GCL) as a barrier layer at the edge of the final cover system in landfill. The GCLs were simulated the stability of slope, the HELP(Hydrologic Evaluation of Landfill Performance) and the durability of environmental situation. As the results, the GCL has more stable than the CCL. Therefore, the authors suggest that the GCL in good for the barrier layer of the final cover system in the landfill.

  • PDF

Organic-Inorganic Hybrid Materials Technology for Gas Barrier (가스 차단을 위한 유.무기 하이브리드 소재기술)

  • Kim, Ki-Seok;Pa가, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.112-117
    • /
    • 2011
  • Recently, high growth potential of barrier materials industry including high performance packing materials was expected with increasing the national income and well-being culture. As high barrier materials, polymer nanocomposites have considerable attractions due to their excellent physical properties compared to conventional composite materials. In general, polymer nanocomposites were consisted of polymer matrix and inorganic fillers, such as layered silicate, carbon nanotubes, and metal- or inorganic nanoparticles. Among these materials, layered silicate which was called as the clay was usually used as nano-fillers because of naturally abundant and most economical and structural properties. Clay-reinforced polymer nanocomposites have various advantages, such as high strength, flammability, gas barrier property, abrasion resistance, and low shrinkage and used for automotive and packing materials. Therefore, in this paper, we focused on the need of gas barrier materials and materials-related technologies.

Analysis of Thermal Stability and Schottky Barrier Height of Pd Germanide on N-type Ge-on-Si Substrate (N형 Ge-on-Si 기판에 형성된 Pd Germanide의 열안정성 및 Schottky 장벽 분석)

  • Oh, Se-Kyung;Shin, Hong-Sik;Kang, Min-Ho;Bok, Jeong-Deuk;Jung, Yi-Jung;Kwon, Hyuk-Min;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • In this paper, thermal stability of palladium germanide (Pd germanide) is analyzed for high performance Schottky barrier germanium metal oxide semiconductor field effect transistors (SB Ge-MOSFETs). Pd germanide Schottky barrier diodes were fabricated on n-type Ge-on-Si substrates and the formed Pd germanide shows thermal immunity up to $450^{\circ}C$. The barrier height of Pd germanide is also characterized using two methods. It is shown that Pd germanide contact has electron Schottky barrier height of 0.569~0.631 eV and work function of 4.699~4.761 eV, respectively. Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.

The Influence of Career-barrier of the disabled upon dysfunctional Career-thought (장애인의 진로장벽이 역기능적 진로사고에 미치는 영향)

  • Kim, Gun-Hui;Yun, Jong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.157-168
    • /
    • 2013
  • This study is for finding out Career-barrier of the disabled, and for analyzing the effect of Career-barrier on the dysfunctional career-thought. For this study, 180 disabled people were surveyed. The results are as follows; First, the career-barriers that the disabled people perceive are in order; lack of occupational information, lack of social support, low self-concept clarity, low self-efficiency, and conflict with significant-others. Secondly, difference of career-barrier, caused by the traits of the disabled, has influenced the lack of self clarity and occupational information. In addition, among the types of the disabilities, it is proven that the psychological disability highly correlated to the social support, unlikely to gender difference and job experience. Thirdly, the most influential reason on the decision-making confusion for finding job among the sub-variables of dysfunctional career-thought were; low self-concept clarity, conflict with significant-others, and low self-efficiency. While it turned out that the most influential career-barrier on the performance anxiety for disabled people were low self-efficiency and conflict with significant-others.

An Experimental Study on Development Connection System of Concrete Barrier in Modular Bridges (조립식교량의 콘크리트 방호울타리 연결시스템 개발을 위한 실험적 연구)

  • Jung, Ho Sung;Lee, Sang Seung;Choi, Jin Woong;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period. However, main stream of the study is limited to the pier, girder and deck of bridge, which are huge or main members. Studies on incidental facilities like concrete barrier is out of sight. Thus, in this study, connection system of concrete barrier was developed to apply to modular bridges and static experiment was performed in order to verify structural capability of proposed system. Variables of experiment are composed of bolt direction such as vertical and horizontal. The experimentation due to the designed variables was conducted by comparison with a standard concrete barrier, which is a traditional barrier. As a result, vertical joint way of the bolt showed nearly identical structural performance and healthy to standard specimen's. it can be applied to modular bridges.

Evaluation of Best Value for Safety Facilities on Highway Using Risk-based VE Approach - A Case Study of Median Barrier - (위험도기반 가치공학적 기법을 적용한 고속도로 교통안전시설 최고가치평가 : 중앙분리대 적용사레를 중심으로)

  • Ji, Dong-Han;O, Young-Tae;Choi, Hyun-Ho;Kim, Sung-Hun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.143-154
    • /
    • 2008
  • Since the concerns for safety of highway traffic safety facilities inherent in various environmental risk is increased, systematic performance, cost, and effect analysis process is needed for this. In case of median barrier among various traffic safety facilities, quantitative risk assessment is inevitable because it has lots of direct/indirect risk factors. Thus, this study suggests an advanced VE(Value Engineering) approach incorporating quantitative risk analysis. For the applicability, suggested VE approach considering alternative 1(140cm) and 2(127cm) is applied to median barrier in fields. Also, major improvement objects are extracted from governing factors of cost and performance based on functional analysis. It is concluded that the proposed risk assessment methodology will provide rational and practical solutions for best value and the approach could effectively applied for various traffic safety facilities by slight modification of suggest process.