Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.4.271

Analysis of Thermal Stability and Schottky Barrier Height of Pd Germanide on N-type Ge-on-Si Substrate  

Oh, Se-Kyung (Department of Electronics Engineering, Chungnam National University)
Shin, Hong-Sik (Department of Electronics Engineering, Chungnam National University)
Kang, Min-Ho (Department of Electronics Engineering, Chungnam National University)
Bok, Jeong-Deuk (Department of Electronics Engineering, Chungnam National University)
Jung, Yi-Jung (Department of Electronics Engineering, Chungnam National University)
Kwon, Hyuk-Min (Department of Electronics Engineering, Chungnam National University)
Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University)
Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.4, 2011 , pp. 271-275 More about this Journal
Abstract
In this paper, thermal stability of palladium germanide (Pd germanide) is analyzed for high performance Schottky barrier germanium metal oxide semiconductor field effect transistors (SB Ge-MOSFETs). Pd germanide Schottky barrier diodes were fabricated on n-type Ge-on-Si substrates and the formed Pd germanide shows thermal immunity up to $450^{\circ}C$. The barrier height of Pd germanide is also characterized using two methods. It is shown that Pd germanide contact has electron Schottky barrier height of 0.569~0.631 eV and work function of 4.699~4.761 eV, respectively. Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.
Keywords
Pd germanide; Pd germanide Schottky diodes; SB Ge-MOSFETs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. L. Shang, O. S. Harald, K. K. Chan, M. Copel, J. A. Ott, P. M. Kozlowski, S. E. Steen, S. A. Cordes, H. P. Wong, E. C. Jones, and W. E. Haensch, IEDM Tech. Dig., 441 (2002).
2 C. O. Chui, H. Kim, D. Chi, B. B. TRiplett, P. C. Mcintyre, and K. C. Saraswat, IEDM Tech. Dig., 437 (2002).
3 C. H. Huang, D. S. Yu, A. Chin, C. H. Wu, W. J. Chen, C. Zhu, M. F. Li, B. J. Cho, and D. L. Kwong, IEDM Tech. Dig., 319 (2003).
4 E. P. Gusev, H. Shang, M. Copel, M. Gribelyuk, C. D. Emic, P. Kozlowski, and T. Zabel, Appl. Phys. Lett. 85, 2334 (2004).   DOI
5 S.Y. Zhu, R. Li, S. J. Lee, M. F. Li, A. Du, J. Singh, C. X. Zhu, A. Chin and D. L. Kwong, IEEE Electron Device Lett., 26, 81 (2005).   DOI
6 L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J.P. Snyder, and J. R. Tucker, J. Appl Phys., 91, 757 (2002).   DOI
7 R. Li, H.B. Yao, S. J. Lee, D. Z. Chi, M. B. Yu, G. Q. Lo, and D. L. Kwong, Thin Solid Films, 504, 28 (2006).   DOI
8 S. K. Oh, Y. Y. Zhang, H. S. Shin, I. S. Han, H. M. Kwon, B. S. Park, S. U. Park, J. D. Bok, G. W. Lee, J. S. Wang, and H. D Lee, Ext. Abs. the 10th International Workshop on Junction Technology (Shanghai, China, 2010) p. 82.
9 Y. L. Jiang, G. P. Ru, X. P. Qu, and B. X. Li, Ext. Abs. the 7th International Workshop on Junction Technology (Kyoto, Japan, 2007) p. 93.
10 Donald A. Neamen, Semiconductor physics and devices (basic principles 3rd ed., McGraw Hill, New York, 2002) p.329.
11 K. Saraswat, C. O. Chui, T. Krishnamohan, D. Kim, A. 554 Nayfeh, and A. Pethe, Mat. Sci. Eng. B, 135, 242 (2006).   DOI
12 J. Oh, P. Majhi, H. D. Lee, K. T. Lee, W. H. Choi, J. W. Yang, C. Y. Kang, R. Harris, S. C. Song, P. Kalra, S. Lee, S. Banerjee, B. H. Lee, H. H. Tseng, and R. Jammy, Ext. Abs. the 7th International Workshop on Junction Technology (Kyoto, Japan, 2007) p. 55.
13 C. Martin, L. M. Hitt, and J. J. Rosenberg, IEEE Electron Device Lett., 10, 325 (1989).   DOI