DOI QR코드

DOI QR Code

Analysis of Thermal Stability and Schottky Barrier Height of Pd Germanide on N-type Ge-on-Si Substrate

N형 Ge-on-Si 기판에 형성된 Pd Germanide의 열안정성 및 Schottky 장벽 분석

  • Oh, Se-Kyung (Department of Electronics Engineering, Chungnam National University) ;
  • Shin, Hong-Sik (Department of Electronics Engineering, Chungnam National University) ;
  • Kang, Min-Ho (Department of Electronics Engineering, Chungnam National University) ;
  • Bok, Jeong-Deuk (Department of Electronics Engineering, Chungnam National University) ;
  • Jung, Yi-Jung (Department of Electronics Engineering, Chungnam National University) ;
  • Kwon, Hyuk-Min (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
  • Received : 2010.12.15
  • Accepted : 2011.02.07
  • Published : 2011.04.01

Abstract

In this paper, thermal stability of palladium germanide (Pd germanide) is analyzed for high performance Schottky barrier germanium metal oxide semiconductor field effect transistors (SB Ge-MOSFETs). Pd germanide Schottky barrier diodes were fabricated on n-type Ge-on-Si substrates and the formed Pd germanide shows thermal immunity up to $450^{\circ}C$. The barrier height of Pd germanide is also characterized using two methods. It is shown that Pd germanide contact has electron Schottky barrier height of 0.569~0.631 eV and work function of 4.699~4.761 eV, respectively. Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.

Keywords

References

  1. J. Oh, P. Majhi, H. D. Lee, K. T. Lee, W. H. Choi, J. W. Yang, C. Y. Kang, R. Harris, S. C. Song, P. Kalra, S. Lee, S. Banerjee, B. H. Lee, H. H. Tseng, and R. Jammy, Ext. Abs. the 7th International Workshop on Junction Technology (Kyoto, Japan, 2007) p. 55.
  2. C. Martin, L. M. Hitt, and J. J. Rosenberg, IEEE Electron Device Lett., 10, 325 (1989). https://doi.org/10.1109/55.29667
  3. K. Saraswat, C. O. Chui, T. Krishnamohan, D. Kim, A. 554 Nayfeh, and A. Pethe, Mat. Sci. Eng. B, 135, 242 (2006). https://doi.org/10.1016/j.mseb.2006.08.014
  4. H. L. Shang, O. S. Harald, K. K. Chan, M. Copel, J. A. Ott, P. M. Kozlowski, S. E. Steen, S. A. Cordes, H. P. Wong, E. C. Jones, and W. E. Haensch, IEDM Tech. Dig., 441 (2002).
  5. C. O. Chui, H. Kim, D. Chi, B. B. TRiplett, P. C. Mcintyre, and K. C. Saraswat, IEDM Tech. Dig., 437 (2002).
  6. C. H. Huang, D. S. Yu, A. Chin, C. H. Wu, W. J. Chen, C. Zhu, M. F. Li, B. J. Cho, and D. L. Kwong, IEDM Tech. Dig., 319 (2003).
  7. E. P. Gusev, H. Shang, M. Copel, M. Gribelyuk, C. D. Emic, P. Kozlowski, and T. Zabel, Appl. Phys. Lett. 85, 2334 (2004). https://doi.org/10.1063/1.1794849
  8. S.Y. Zhu, R. Li, S. J. Lee, M. F. Li, A. Du, J. Singh, C. X. Zhu, A. Chin and D. L. Kwong, IEEE Electron Device Lett., 26, 81 (2005). https://doi.org/10.1109/LED.2004.841462
  9. L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J.P. Snyder, and J. R. Tucker, J. Appl Phys., 91, 757 (2002). https://doi.org/10.1063/1.1425074
  10. R. Li, H.B. Yao, S. J. Lee, D. Z. Chi, M. B. Yu, G. Q. Lo, and D. L. Kwong, Thin Solid Films, 504, 28 (2006). https://doi.org/10.1016/j.tsf.2005.09.033
  11. S. K. Oh, Y. Y. Zhang, H. S. Shin, I. S. Han, H. M. Kwon, B. S. Park, S. U. Park, J. D. Bok, G. W. Lee, J. S. Wang, and H. D Lee, Ext. Abs. the 10th International Workshop on Junction Technology (Shanghai, China, 2010) p. 82.
  12. Y. L. Jiang, G. P. Ru, X. P. Qu, and B. X. Li, Ext. Abs. the 7th International Workshop on Junction Technology (Kyoto, Japan, 2007) p. 93.
  13. Donald A. Neamen, Semiconductor physics and devices (basic principles 3rd ed., McGraw Hill, New York, 2002) p.329.