• 제목/요약/키워드: analytic Feynman integral.

검색결과 62건 처리시간 0.027초

GENERALIZED ANALYTIC FEYNMAN INTEGRALS INVOLVING GENERALIZED ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND GENERALIZED INTEGRAL TRANSFORMS

  • Chang, Seung Jun;Chung, Hyun Soo
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.231-246
    • /
    • 2008
  • In this paper, we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish several integration formulas for generalized analytic Feynman integrals generalized analytic Fourier-Feynman transforms and generalized integral transforms of functionals in the class of functionals ${\mathbb{E}}_0$. Finally, we use these integration formulas to obtain several generalized Feynman integrals involving the generalized analytic Fourier-Feynman transform and the generalized integral transform of functionals in ${\mathbb{E}}_0$.

  • PDF

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE

  • Chang, Seung-Jun;Lee, Il-Yong
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.437-456
    • /
    • 2003
  • In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra $S(L^2_{a,b}[0,T])$ and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.

TRANSLATION THEOREM FOR THE ANALYTIC FEYNMAN INTEGRAL ASSOCIATED WITH BOUNDED LINEAR OPERATORS ON ABSTRACT WIENER SPACES AND AN APPLICATION

  • Jae Gil Choi
    • 대한수학회지
    • /
    • 제61권5호
    • /
    • pp.1035-1050
    • /
    • 2024
  • The Cameron-Martin translation theorem describes how Wiener measure changes under translation by elements of the Cameron-Martin space in an abstract Wiener space (AWS). Translation theorems for the analytic Feynman integrals also have been established in the literature. In this article, we derive a more general translation theorem for the analytic Feynman integral associated with bounded linear operators (B.L.OP.) on AWSs. To do this, we use a certain behavior which exists between the analytic Fourier-Feynman transform (FFT) and the convolution product (CP) of functionals on AWS. As an interesting application, we apply this translation theorem to evaluate the analytic Feynman integral of the functional $$F(x)={\exp}\left(-iq\int_{0}^{T}x(t)y(t)dt\right),\,y{\in}C_0[0,\,T],\;q{\in}{\mathbb{R}}\,{\backslash}\,\{0\}$$ defined on the classical Wiener space C0[0, T].

ANALYTIC FOURIER-FEYNMAN TRANSFORM AND FIRST VARIATION ON ABSTRACT WIENER SPACE

  • Chang, Kun-Soo;Song, Teuk-Seob;Yoo, Il
    • 대한수학회지
    • /
    • 제38권2호
    • /
    • pp.485-501
    • /
    • 2001
  • In this paper we express analytic Feynman integral of the first variation of a functional F in terms of analytic Feynman integral of the product F with a linear factor and obtain an integration by parts formula of the analytic Feynman integral of functionals on abstract Wiener space. We find the Fourier-Feynman transform for the product of functionals in the Fresnel class F(B) with n linear factors.

  • PDF

SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL

  • Lee, Il-Yong;Chung, Hyun-Soo;Chang, Seung-Jun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.87-102
    • /
    • 2012
  • In this paper, we consider the Fourier-type functionals introduced in [16]. We then establish the analytic Feynman integral for the Fourier-type functionals. Further, we get a series expansion of the analytic Feynman integral for the Fourier-type functional $[{\Delta}^kF]^{\^}$. We conclude by applying our series expansion to several interesting functionals.

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRAL ON FUNCTION SPACE

  • Lee, Il Yong;Choi, Jae Gil;Chang, Seung Jun
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.217-231
    • /
    • 2013
  • In this paper we establish a Fubini theorem for generalized analytic Feynman integral and $L_1$ generalized analytic Fourier-Feynman transform for the functional of the form $$F(x)=f({\langle}{\alpha}_1,\;x{\rangle},\;{\cdots},\;{\langle}{{\alpha}_m,\;x{\rangle}),$$ where {${\alpha}_1$, ${\cdots}$, ${\alpha}_m$} is an orthonormal set of functions from $L_{a,b}^2[0,T]$. We then obtain several generalized analytic Feynman integration formulas involving generalized analytic Fourier-Feynman transforms.

CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.73-93
    • /
    • 2004
  • In [10], Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we define the conditional generalized Fourier-Feynman transform and conditional generalized convolution product on function space. We then establish some relationships between the conditional generalized Fourier-Feynman transform and conditional generalized convolution product for functionals on function space that belonging to a Banach algebra.