Journal of Natural Science Pai Chai University, Korea Vol. 9, No. 1: 61~68, 1996

Notes on the Sequential Yeh-Feynman Integral

Sung Soo Kim
Department of Applied Mathematics, Pai Chai University

수열 Yeh-Feynman 적분에 관하여

김성수 *배재대학교 응용수학과*

We shall extend the concept of the sequential Feynman integral over the Yeh-Winner space. We shall show that prove the existence of the sequential Yeh-Feynman integral for all element of Banach algebras.

수열 파인만적분을 Yeh-Wiener 공간에서 확장하고 바나하(Banach) 대수의 모든 원에 대한 수열 Yeh-Feynman 적분의 존재성을 밝힐 것이다.

Keywords: Banach algebra, Analytic Yeh-Winner Integral, Analytic Yeh-Feynman Integral, Sequential Yeh-Feynman Integral.

I. Preliminaries

Let $C_2 \equiv C_2(Q)$ be the Yeh-Wiener space (or two parameter Wiener space) on $Q \equiv [a,b] \times [c,d]$, that is, the space of real valued continuous functions x(s,t) on Q such that $x(s,\cdot) = x(\cdot,t) = 0$ for all $(s,t) \in Q$. And let $C_2^{\nu} \equiv C_2^{\nu}(Q) = X_{\alpha=1}^{\nu}C_2(Q)$ be the ν -dimensional Yeh-Wiener space.

Definition 1.1

Let F be a functional on $C^{2}_{\nu}(Q)$ which is s-a.e. defined such that the Yeh-Wiener integral

$$J(X) = \int_{C_{x}} F(\lambda^{-\frac{1}{2}} \vec{x}) dm_{y}(\vec{x})$$

exists for all real $\lambda > 0$. If there exists a function $J^*(\lambda)$ analytic in the half plane Re $\lambda > 0$ ($C^+ = \{ \lambda \in C : Re \lambda > 0 \}$) such that $J^*(\lambda) = J(\lambda)$ for all real $\lambda > 0$, then $J^*(\lambda)$ is defined to be the analytic Yeh-Wiener integral of F over $C_2^{\nu}(Q)$ with parameter λ , and for $\lambda \in C^+$, we write

$$\int_{C_{x}^{2}}^{anyw_{\lambda}} F(x) dm_{y}(x) = f'(\lambda)$$

Definition 1.2

Let q be a non-zero real parameter let F be a functional whose analytic Yeh-Wiener integral

exists for $\lambda \in C^+$. Then if the following limit exists, we call it the analytic Yeh-Feynman integral of F over $C_2^{\nu}(Q)$ with parameter q, and we write.

$$\int_{C_{\frac{1}{2}}}^{anyl_q} F(\vec{x}) dm_y(\vec{x}) = \lim_{\substack{x \to iq \\ Re \ \lambda > 0}} \int_{C_{\frac{1}{2}}}^{anyw_{\perp}} F(\vec{x}) dm_y(\vec{x})$$

where λ approaches -iq through C^+ .

We define a σ -algebra α in $L_2^{\nu}(Q)$ and a class of complex measures m on $L_2^{\nu}(Q)$. Let α be the σ -algebra of subsets of $L_2^{\nu}(Q)$ generated by the class of sets of the form

$$\left\{\overrightarrow{\nu} \in L_2^{\nu}(Q) : \int_{Q} \nu_j(s, t) \varphi_j(s, t) ds dt \langle \lambda_j \rangle \right\}$$

$$for j = 1, 2, \dots, \nu$$

where $\varphi=(\varphi_1,\cdots,\varphi_\nu)$ ranges over all elements of $L_2^\nu(Q)$, and $\overrightarrow{\lambda}=(\lambda_1,\cdots,\lambda_\nu)$ ranges over R^ν . The σ -algebra α is actually the Borel class of $L_2^\nu(Q)$, that is, the σ -algebra $\beta(L_2^\nu(Q))$ generated by the norm of open subsets of $L_2^\nu(Q)$.

And let $m \equiv m(L_2^{\nu}(Q))$ be the collection of complex measures of finite variation defined on $L_2^{\nu}(Q)$ with α as its σ -algebra of measurable sets. If $\mu \in m$, we set $\|\mu\| = var \mu$ over $L_2^{\nu}(Q)$. It is clear that m is a linear space of measures.

Definition 1.3

Let $S(\nu)$ be the space of functionals F expressible in the form.

$$F(\vec{x}) = \int_{C_{i}^{\nu}} \exp\left\{i \sum_{j=1}^{\nu} \int_{Q} v_{j}(s, t) \, dx_{j}(s, t)\right\} d\mu \, (\vec{v})$$

for
$$s-a.e. \overrightarrow{x} \in C_2^{\nu}(Q)$$
, where $\mu \in m$.

Theorem 1.1

Let $\mu \in m(L_2^{\nu}(Q))$ and let $F \in S(\nu)$ be the stochastic Fourier transformation of μ , that is

$$F(\vec{x}) = \int_{L_i} \exp\left\{i \sum_{j=1}^{k} \int_{Q} v_j(s, t) \, dx_j(s, t)\right\} d\mu(\vec{v})$$

Then F is analytic Yeh-Feynman integrable on $C_2^{\nu}(Q)$. If q is a non-zero real number, then

$$\int_{C_{i}^{z}}^{anyf_{s}} F(\overrightarrow{x}) dm_{y}(\overrightarrow{x})$$

$$= \int_{L_{i}^{z}} \left\{ \frac{1}{zqi} \sum_{j=1}^{\nu} \int_{Q} (v_{j}(s, t))^{2} ds dt \right\} d\mu (\overrightarrow{v})$$

Proof For λ we can write

$$J(\lambda) \equiv \int_{C_x^x} F(\lambda^{-\frac{1}{2}} \vec{x}) dm_y(\vec{x})$$

$$= \int_{C_x^x} \int_{L_x^x} \exp\left\{i \sum_{j=1}^y \int_Q v_j(s,t) \vec{d}\right\}$$

$$(\lambda^{-\frac{1}{2}} x_j)(s,t) d\mu(\vec{v}) dm_y(\vec{x})$$

$$= \int_{L_z^z} \int_{C_z^z} \exp\left\{i\lambda^{-\frac{1}{2}} \sum_{j=1}^{\nu} \int_{Q} v_j \right.$$
$$(s,t) \, dx_j(s,t) \} dm_y(\vec{x}) d\mu(\vec{v})$$

by the linearity of the P.W.Z. integral and the Fubini theorem.

$$\int_{R} \exp\{-(\alpha z^{2} + \beta z)\} dz = \sqrt{\frac{\pi}{\alpha}} \exp\left(-\frac{\beta^{2}}{4\alpha}\right)$$

for $\alpha > 0$ and real or imaginary β , we can have

$$J(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{L_{2}^{v}} \int_{\infty}^{\infty} \exp\left\{i\lambda^{-\frac{1}{2}} u \cdot \frac{1}{v} \right\} \exp\left(-\frac{u^{2}}{2}\right) du d\mu \overrightarrow{v}$$

$$= \int_{L_{2}^{v}} \exp\left\{-\frac{\|\overrightarrow{v}\|_{2}^{2}}{2\lambda}\right\} d\mu \overrightarrow{v}$$

First note that the Yeh-Wiener integral $J(\lambda)$ exists for Re $\lambda > 0$ ($\lambda \neq 0$) since the integrand is bounded by 1 and $\mu \in m$. And also note that by the Morera's theorem, the Fubini theorem, and the Cauchy integral theorem, the integral $J(\lambda)$ is analytic in $C^+ = \lambda \in C$: $Re \lambda > 0$.

Thus we have for Re $\lambda > 0$.

$$\int_{C_{z}^{\perp}}^{anyw} F(\vec{x}) dm_{y}(\vec{x}) = \int_{L_{z}^{+}} \exp\left\{-\frac{\|\vec{v}\|_{2}^{2}}{2\lambda}\right\} d\mu(\vec{v})$$

By the application of the Dominated Convergence Theorem we have

$$\int_{C_i}^{anyf_x} F(\vec{x}) dm_y(\vec{x}) = \int_{L_i} \exp\left\{-\frac{\|\vec{v}\|_2^2}{2\lambda}\right\} d\mu(\vec{v})$$

$$= \int_{L_i} \exp\left\{\frac{1}{2qi} \sum_{j=1}^{\nu} \int_{Q} [v_j(s,t)]^2 ds dt\right\} d\mu(\vec{v})$$

II. The Sequential Yeh-Feynman Integral over $C_2^{\nu}(Q)$

Let a subdivision σ of Q be given;

$$\sigma$$
; $a = s_0 \langle s_1 \langle \cdots \langle s_l = b, c = t_0 \langle t_1 \langle \cdots \langle t_m = a \rangle \rangle$

A be a vector of real numbers given by $A = (A^{1} \cdots A^{\nu})$

where $A^{\alpha} = \{ \alpha_{j+k}^{\alpha} \}$ for $\alpha = 1, 2, \dots, \nu$, j=1, 2, ..., l, k=1, 2, ..., m.

And let $\vec{x}_{\sigma} \equiv \vec{x}_{\sigma}((s,t),A)$ be a quadratic function in $C_2^{\nu}(Q)$ based on a subdivision σ and the vector of real numbers A, and defined

by

$$\vec{x}_{\sigma} \equiv \vec{x}_{\sigma}((s,t),A) = [x_{\sigma}^{1}((s,t),A^{1}),\cdots, x_{\sigma}^{\nu}((s,t),A^{\nu})]$$

where

$$x_{\sigma}^{\nu}((s,t),A)$$

$$= \frac{a_{j-k}^{\alpha} - a_{j-1-k}^{\alpha} - a_{j-k-1}^{\alpha} + a_{j-1-k-1}^{\alpha}}{(s_{j} - s_{j-1})(t_{k} - t_{k-1})}$$

$$(s - s_{j-1})(t - t_{k-1})$$

$$= \frac{a_{j-k-1}^{\alpha} - a_{j-1,k-1}^{\alpha}}{s_{j} - s_{j-1}}(s - s_{j-1}) + \frac{a_{j-1,k}^{\alpha} - a_{j-1,k-1}^{\alpha}}{t_{k-1} - t_{k-1}}(t - t_{k-1}) + a_{j-1,k-1}^{\alpha}...(1)$$

When

$$(s, t) \in [s_{j-1}, s_j] \times [t_{k-1}, t_k], \ a_{j,o}^a = a_{o,k}^a = 0$$

for
 $a = 1, 2, \dots, \nu, \ j = 1, 2, \dots, l, \ \text{and} \ k = 1, 2, \dots, m.$

Remark

As $A = \{a_{i,k}^{\alpha}\}$ ranges over all of ν lm-dimensional real space, the quadratic funtions ((s,t),A) range over all quadratic approximations in $C_2^{\nu}(Q)$ based on σ .

Specifically, if \vec{x} is a particular element of $C_2^{\nu}(Q)$ and if we set $a_j^a_{k} = x^a(S_j, t_k)$, then the function $\vec{x}_{\sigma}((s, t), A)$ is the quardratic approximation of \vec{x} based on the subdivision σ .

Definition 2.1

Let q be a given non-zero real number and let $F(\vec{x})$ be a functional defined on a subset of $C_2^{\nu}(Q)$ containing all the quadratic elements of $C_2^{\nu}(Q)$. Let $\{\sigma_n\}$ be a sequence of subdivisions of Q such that norm $\|\sigma_n\| \to 0$,

and let $\{\lambda_n\}$ be a sequence if $C^+ = \{\lambda \in \mathbb{C} : Re \lambda > 0\}$ such that $\lambda_n \to -iq$.

Then if the integral in the right of (5, 2) exists for all n and if the following limit exists and is independent of the choice of sequences $\{\sigma_n\}$ and $\{\lambda_n\}$, we say that the sequential Yeh-Feynman integral over $\mathbf{C}_2^{\nu}(Q)$ with parameter q exists and is given by

$$\int_{0}^{syf_{q}} F(x) dx = \lim_{n \to \infty} r \sigma_{n} \lambda_{n} \int_{R^{s(tm)}} \exp \left\{ -\frac{\lambda_{n}}{2} \int_{Q} \left\| \frac{\partial^{2} x \sigma_{n}}{\partial s \partial t} ((s, t), A) \right\|^{2} ds dt \right\}$$

$$F(x \sigma_{n}((\cdot, \cdot), A)) dA...(2)$$

Where

$$r_{\sigma,\lambda} = \left(\frac{\lambda}{2\pi}\right)^{\frac{\nu m}{2}} \left[\prod_{j=1}^{l} \prod_{k=1}^{m} (s_j - s_{j-1})(t_k - t_{k-1})\right]^{-\frac{\nu}{2}}$$

and
$$A = (A^1 \cdots, A^{\nu}), A^{\alpha} = (A_1^{\alpha} \cdots, A_m^{\alpha})$$

and $A_k^{\alpha} = (\alpha_{1,k}^{\alpha} \cdots, \alpha_{l,k}^{\alpha})$
for $\alpha = 1, \dots, \nu, k = 1, \dots, m$

We note that l, m depend on σ and lm is the number of subrectiongles in σ , We empha size that the Lebesgue integral on the right of (2) exists for all n.

We write
$$\int_{0}^{sgf_{q}} F(\vec{x}) d\vec{x}$$
 in stead of
$$\int_{0}^{sgf_{q}} F(\vec{x}) dm_{y}(\vec{x})$$

Let

$$W_{\lambda}(\sigma, A)$$

$$= r_{\sigma, \lambda} \exp\left\{-\frac{\lambda}{2}\right\}$$

$$\int_{Q} \|\frac{\partial^{2} \vec{x}_{\sigma}}{\partial s \partial t}((s, t), A)\|^{2} ds dt$$

$$= \left(\frac{\lambda}{2\Pi}\right)^{\frac{\nu \ln m}{2}} \left[\prod_{j=1}^{l} \prod_{k=1}^{m} (s_{j} - s_{j-1})(t_{k} - t_{k-1}) \right]^{-\frac{\nu}{2}} \cdot \exp\left\{ -\frac{\lambda}{2} \sum_{j=1}^{l} \sum_{k=1}^{m} \frac{\|\overrightarrow{\alpha}_{j,k} - \overrightarrow{\alpha}_{j-1,k}}{(s_{j} - s_{j-1})(t_{k} - t_{k-1})} - \frac{\overrightarrow{\alpha}_{j,k-1} + \overrightarrow{\alpha}_{j-1,k-1} \|^{2}}{(s_{i} - s_{j-1})(t_{k} - t_{k-1})} \right\}$$

By the notation $\lambda = \frac{\nu \ln m}{2}$ we mean $(\sqrt{\lambda})^{\nu \ln m}$ where Re $\sqrt{\lambda} > 0$, and $\overrightarrow{\alpha}_{j,k}$ is the vector $[\alpha_{j,k}^1, \cdots, \alpha_{j,k}^\nu]$ and $||\overrightarrow{\alpha}_{j,k}|| = \sum_{k=1}^{\nu} (\alpha_{j,k}^\nu)^2$.

Thus in terms of W, The sequential Yeh-Feynman integral defined in (2) can be written

$$\int_{0}^{syf_{q}} F(x) dx = \lim_{n \to \infty} \int_{R^{(-lim)}} W_{\lambda_{n}}(\sigma_{n}, A) F(x \sigma_{n}((\cdot, \cdot), A)) dA$$

Remark

Since $\{\sigma_n\}$ and $\{\lambda_n\}$ were chosen arbitrarily and independently in the definition 1, the single limit may also be expressed as a double limit, thus

$$\int_{x}^{\operatorname{syf}_q} F(\vec{x}) d\vec{x} = \lim_{\substack{n \to \infty \\ k \to \infty}} I_{n,k}$$

where

$$I_{n,k} = \int_{R^{*(lm)}} W_{\lambda n}(\sigma_k, A) F(\overrightarrow{x}_{\sigma_k}(\cdot, \cdot), A) dA$$

Now we introduce the Banach algebra \hat{S} , S^* and relationship among some Banach algebras without proof.

Let $D_2 \approx D_2(Q)$ be the class of elements $x \in C_2(Q)$ such that $x \in AC(Q)$ and $\frac{\partial^2 x(s,t)}{\partial s \partial t} \in L_2(Q)$ where $L_2 = L_2(Q)$ is a hilbert space of Lebesgue measurable, real valued and square integrable functionals on Q

and let $D_2^{\nu} \equiv D_2^{\nu}(Q) = X_{i=1}^{\nu} D_2(Q)$.

Definition 2.2

The functional F defined on a subset of $C_2^{\nu}(Q)$ that contains $D_2^{\nu}(Q)$ is said to be an element of $\widehat{S}(\nu) \equiv \widehat{S}(L_2^{\nu})$ if there exists a measure $M \in m$ such that for $x \in D_2^{\nu}(Q)$

$$F(\vec{x}) = \int_{L_i} \exp\left\{i \sum_{j=1}^{\nu} \int_{Q} v_j(s, t) \frac{\partial^2 x(s, t)}{\partial s \partial t} ds dt\right\} d\mu(\vec{v})$$

We note, that if $F(\vec{x}) = G(\vec{x})$ for s-a.e. \vec{x} in $C_2^{\nu}(Q)$ and for every \vec{x} in $D_2^{\nu}(Q)$, we write $F \approx G$.

We have that $v \in L_2(Q)$, $x \in D_2(Q)$ then

$$\int_{Q} v(s,t) \, dx(s,t) = \int_{Q} v(s,t) \frac{\partial^{2} x(s,t)}{\partial s \, \partial t} \, ds dt$$

Thus if $v \in L_2(Q)$ and $\{\varphi_n\}$, $\{\psi_n\}$ are two C, O, N, sequences of $B \cup \{Q\}$, then

$$\int_{Q} v(s,t) \, \widehat{d}x(s,t) = \int_{Q} v(s,t) \, \widehat{d}x(s,t)$$

for $x \in D_2(Q)$, and hence

$$\int_{L_{z}} \exp\left\{i^{\left(\varphi_{s}\right)} \int_{Q} v(s,t) \, dx(s,t)\right\}$$

$$d\mu\left(\nu\right) x \int_{L_{z}} \exp\left\{i^{\left(\psi_{s}\right)} \int_{Q} v(s,t) \, dx(s,t)\right\} d\mu\left(o\right)$$

Definition 2.3

Let $S^*(\nu) \equiv S^*(L_2^{\nu})$ be the space of functionals F expressible in the form

$$F(\vec{x})x \int_{L_z^s} \exp\left\{i \sum_{j=1}^{\nu} \int_{Q} v_j(s,t) \, dx_j(s,t)\right\} d\mu \, (\vec{v})$$

where $\mu \in m$

Let $v \in L_2(Q)$ and let σ be any subdivision

$$\sigma: a = S_0 \langle S_1 \langle \cdots \langle S_l = b, c = t_0 \langle t_1 \langle \cdots \langle t_m = b, c \rangle \rangle$$

We define the averaged function $v_{\sigma}(s,t)$ for v on σ by

$$v_{\sigma}(s,t) = \left\{ \frac{1}{(s_{j} - s_{j-1})(t_{k} - t_{k-1})} \int_{s_{j-1}}^{s_{j}} \int_{t_{k-1}}^{t_{k}} v(p,q) dp dq \right\}$$

when $(s, t) \in [s_{j-1}, s_j] \times [t_{k-1}, t_k]$

for $j=l,\cdots,l,\ k=1,\cdots,m$ when s=b or t=a Where there is a sequence for subdivisions σ_1,σ_2,\cdots , then $\sigma_1,l,m,s,$ and t_R will be replaced by $\sigma_n,l_n,m_n,s_n,$ and $t_{n,k}$ respectively.

For any $v \in L_2(Q)$

$$\lim_{h,k\to 0} \frac{1}{hk} \int_{s}^{s+h} \int_{t}^{t+k} v(p,q) dp dq = v(s,t)$$

for almost everywhere (s, t) in Q.

Theorem 2.1

If $F \in S^*(\nu)$ and q is a nonzero real number, then F is sequentially Yeh-Feynman integrable and its sequential Yeh-Feynman integral is equal to its analytic Yeh-Feynman integral, that is

$$\int_{a}^{syf_{q}} F(\vec{x}) d\vec{x} = \int_{L_{i}} \exp\left\{\frac{1}{2qi}\right\} \\ \sum_{a=1}^{\nu} \int_{Q} [v_{a}(s,t)]^{2} ds dt dt dt \vec{v}$$

Proof

Since $F \in S^*(v)$, there exists a measur $\mu \in M$ such that

$$F(\vec{x}) \approx \int_{L_2^*} \exp\left\{i \sum_{\alpha=1}^{\nu} \int_{Q} [v_{\alpha}(s, t) dx_{\alpha}(s, t)] d\mu(\vec{v})\right\}$$

In particular, this equality holds for all

quadratic functions $\vec{x}_{\sigma n}$. Let $\{\sigma_n\}$ and $\{\lambda_n\}$ be sequences of subdivisions of Q, a sequence in $\lambda \in \mathbb{C} \mid Re \lambda > 0$ such that the norm $\|\sigma_n\| \to 0$, Re $\lambda_n > 0$ and $\lambda_n \to iq$.

$$J_{n} \equiv \int_{R^{d_{a_{n}}}} W_{\lambda_{n}}(\sigma_{n}, A)$$

$$F(\overrightarrow{x}_{\sigma_{n}}((\cdot, \cdot), A)) dA$$

$$\int_{R^{d_{a_{n}}}} W_{\lambda_{n}}(\sigma_{n}, A) \int_{L_{2}^{v}}$$

$$\exp \left\{ i \sum_{\alpha=1}^{v} \int_{Q} V_{\sigma}(s, t) dx_{\sigma_{n}}^{\alpha} \right\}$$

$$((s, t), A) d\mu(\overrightarrow{v}) dA.$$

By the Fubini theorem and the properlies Paley-Wiener-Zygmand (P, W, Z) integral, we have

$$J_{n} = \int_{L_{z}^{z}} \int_{R^{d_{n}}} W_{\lambda_{n}}(\sigma_{n}, A) \exp\left\{i \sum_{\sigma=1}^{V} \int_{Q} V_{\sigma}(s, t) - \frac{\partial^{2} x_{\sigma_{n}}^{\alpha}((s, t), A)}{\partial s \partial t} ds dt\right\} dA d\mu(\vec{v})$$

Since $S^*(v)$ is a Banach algebra

$$\begin{split} &J_{n} = r_{\sigma n,} \lambda_{n} \int_{L_{2}^{\nu}} \int_{R^{n l_{\infty}}} \\ &\exp \left\{ -\frac{\lambda_{n}}{2} \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{n}} \right. \\ &\frac{\parallel \overrightarrow{a_{j \cdot k}} - \overrightarrow{a_{j-1 \cdot k}} - \overrightarrow{a_{j,k-1}} + \overrightarrow{a_{j-1,k-1}} \parallel}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \\ &\cdot \exp \left\{ \sum_{a=1}^{\nu} \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{1}} \int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} \\ &v(s,t) \frac{a_{j \cdot k}^{a} - a_{j-1 \cdot k}^{a} - a_{j,k-1}^{a} + a_{j-1,k-1}^{a}}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \\ &\frac{dsdt}{dt} dA d\mu \stackrel{(v)}{v} \\ &r_{\sigma n,} \lambda_{n} \int_{L_{2}^{\nu}} \int_{R^{n l_{\infty}}} \exp \left\{ -\frac{\lambda_{n}}{2} \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{1}} \\ &\frac{\sum_{a=1}^{\nu} (a_{j,k}^{a} - a_{j-1,k}^{a} - a_{j,k-1}^{a} + a_{j-1,k-1}^{a})}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \right. \end{split}$$

$$\cdot \exp\left\{i \sum_{\alpha=1}^{\nu} \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{n}} \int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v(s,t) \right. \\ \left. \frac{a_{j-k}^{\alpha} - a_{j-1-k}^{\alpha} - a_{j,k-1}^{\alpha} + a_{j-1,k-1}^{\alpha}}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} ds dt \right\} dA d\mu \left(\overrightarrow{v}\right)$$

Let $B = \{b_i^a, b\}$ where $b_{i,h}^a = a_{i,h}^a - a_{i-1,h}^a - a_{i,h-1}^a + a_{i-1,h-1}^a$

$$J_{n} = r_{\sigma n, \lambda} \sum_{n} \int_{L_{z}^{s}} \int_{R^{nl_{n,k}}} \exp\left\{-\frac{\lambda_{n}}{2} \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{n}} \sum_{a=1}^{k} \frac{b_{j,k}^{a}}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})}\right\}$$

$$\cdot \exp\left\{i \sum_{a=1}^{\nu} \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{n}} \int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v_{a}(s,t)\right\}$$

$$= r_{\sigma n, \lambda} \sum_{n} \int_{L_{z}^{s}} \int_{R^{nl_{n,k-1}}}^{l_{n}} \prod_{j=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \sum_{a=1}^{m_{n}} \sum_{a=1}^{k} \left[\int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v_{a}(s,t) ds dt \right]$$

$$= r_{\sigma n, \lambda} \sum_{n} \int_{L_{z}^{s}} \prod_{j=1}^{l_{n}} \prod_{k=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \prod_{a=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \prod_{a=1}^{k} \prod_{a=1}^{m_{n}} \prod_{a=1}^{m_{n$$

Since

$$\int_{R} \exp \left\{ -\frac{\lambda_{n} (b_{j,k}^{a})^{2}}{2(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} + i \left(\int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v_{a}(s,t) ds dt \right) - \frac{b_{j,k}^{a}}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \right\} db_{j,k}^{a}$$

$$= \left[\frac{2\Pi(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})}{\lambda_n} \right]^{\frac{1}{2}}$$

$$\exp \left\{ -\frac{\left[\int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v_{\alpha}(s,t) ds dt \right]^2}{2\lambda_n(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \right\}$$

we have

$$J_{n} = r_{\sigma n, \lambda} \int_{n} \int_{L_{2}^{\nu}} \prod_{j=1}^{l_{n}} \prod_{k=1}^{m_{n}} \prod_{\alpha=1}^{\nu} \left[\frac{2\pi (s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})}{\lambda_{n}} \right]^{\frac{1}{2}} \exp \left\{ -\frac{\int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v_{\alpha}(s,t) ds dt}{2\lambda_{n}(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \right\} d\mu (v)$$

And

$$\begin{split} r_{\sigma n, \lambda} \lambda_{n} &\equiv \left(\frac{\lambda_{n}}{2\Pi}\right)^{\frac{\nu l_{n} m_{n}}{2}} \\ &\left[\prod_{j=1}^{l_{n}} \prod_{k=1}^{m_{n}} (s_{n, j} - s_{n, j-1})(t_{n, k} - t_{n, k-1})\right]^{\frac{\nu}{2}} \\ &= \left[\prod_{j=1}^{l_{n}} \prod_{k=1}^{m_{n}} \frac{\lambda_{n}}{2\Pi(s_{n, j} - s_{n, j-1})(t_{n, k} - t_{n, k-1})}\right]^{\frac{\nu}{2}} \\ &= \prod_{j=1}^{l_{n}} \prod_{k=1}^{m_{n}} \prod_{a=1}^{\nu} \left[\frac{\lambda_{n}}{2\Pi(s_{n, j} - s_{n, j-1})(t_{n, k} - t_{n, k-1})}\right]^{\frac{1}{2}} \end{split}$$

then

$$J_{n} = \int_{L_{2}^{v}} \exp\left\{-\sum_{\alpha=1}^{v} \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{n}} \frac{1}{\sum_{k=1}^{m_{n}} \left(s, t\right) ds dt}\right\}^{2}}{\frac{\left[\int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v_{\alpha}(s, t) ds dt\right]^{2}}{2 \lambda_{n}(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} d\mu (v)}$$

We set

$$V_{a.n}(s,t) = \frac{1}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \int_{s_{n,j}}^{s_{n,j}} \int_{t_{n,k}}^{t_{n,k}} v_{a}(p,q) dp dq$$

where
$$(s, t) \in [s_{n,j-1} - s_{n,j}] \times [t_{n,k} - t_{n,k-1}]$$

for $j = 1, \dots, l_n, R = 1, \dots, m_n$,
and $v_{a,n}(\cdot, t) = v_{a,n}(s, \cdot) = 0$

$$\int_{Q} \{v_{\alpha}, n(s, t)\}^{2} ds dt = \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{n}} \int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} \{v_{\alpha,n}(s, t)\}^{2} ds dt$$

$$= \sum_{j=1}^{l_{n}} \sum_{k=1}^{m_{n}} \frac{1}{(s_{n,j} - s_{n,j-1})(t_{n,k} - t_{n,k-1})} \left\{ \int_{s_{n,j-1}}^{s_{n,j}} \int_{t_{n,k-1}}^{t_{n,k}} v_{\alpha}(s, t) ds dt \right\}^{2}$$

$$\begin{split} & : J_n = \\ & \int_{L_t^1} \exp\left\{-\frac{1}{2\lambda_n} \sum_{\alpha=1}^{\nu} \int_{Q} (v_{\alpha,n}(s,t))^2 ds dt\right\} d\mu (\vec{v}) \\ & \int_{S^{SM_n}} F(\vec{x}) d\vec{x} = \lim_{n \to \infty} J_n \\ & = \int_{L_t^1} \exp\left\{-\frac{1}{2\lambda_n} \sum_{\alpha=1}^{\nu} \int_{Q} (v_{\alpha}(s,t))^2 ds dt\right\} d\mu (\vec{v}) \end{split}$$

We hold the following theorem by the same way of theorem 2.1

Theorem 2.2

If $F \in \hat{S}$, and q is nonzero real number, let

$$F(\vec{x}) = \int_{L_i^x} \exp\left\{i \sum_{\alpha=1}^v \int_Q v_i(s, t) \frac{\partial^2 x^2}{\partial s \partial t} ds dt\right\} d\mu (\vec{v})$$

where $\mu \in M$, then we have that F is sequential Yeh-Feynman integrable over $C_2^{\nu}(Q)$ and

$$\int_{L_{1}^{s}}^{syl_{q}} F(x) dx =$$

$$\int_{L_{1}^{s}} \exp\left\{\frac{1}{2qi} \sum_{\alpha=1}^{\nu} \int_{Q} (v_{\alpha}(s, t))^{2} ds dt\right\} d\mu (\overrightarrow{v})$$

Acknowledgment

This study was financially supported by a Central Research Fund in 1995 from Pai-Chai University.

References

- Cameron, R.H. and Storvick, D.A. 1980. Some Banach algebra of analytic Feynman integrable functionals. Lecture Notes in Math. Berlin New York.
- Cameron, R.H. and Storvick, D.A. 1986. New existense theorems and evaluation formulas for sequential Feynman integrals. *Proc. Lon*don Math

- 3. Jonson, G.W. and Skong, D.L. 1979. Scale-invariant measurability in Wiener Space. *Pacific J. of Math.* Vol 83.
- 4. Jonson, G.W., and Skong, D.L. 1981, 1983. Notes on the Feynman integral I, II, III. Pacific J. of Math [I, II], J. of functional Anal (III).
- Park, C. 1969. Generalized Paley Wiener-Zygmund integral and it's application. *Proc.* Amer. Math. Soc.
- 6. Yeh, J. 1973. Stochastic processes and the Wiener integral. Marcel Dekker, New York.