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OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA
CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER
SPACE 11

DonG Hyun CHO

ABSTRACT. In the present paper, using a simple formula for the condi-
tional expectations given a generalized conditioning function over an ana-
logue of vector-valued Wiener space, we prove that the analytic operator-
valued Feynman integrals of certain classes of functions over the space
can be expressed by the conditional analytic Feynman integrals of the
functions. We then provide the conditional analytic Feynman integrals
of several functions which are the kernels of the analytic operator-valued
Feynman integrals.

1. Introduction

Let r be a positive integer and let CJ[0,t] [7] denote the r-dimensional
Wiener space. On the space C{[0,¢] Cameron and Storvick [1] introduced a
very general analytic operator-valued function space Feynman integral Jg" (F),
which mapped an Lg(R")-function % into an Ly(R")-function J¢"(F)i. In
[2, 10] the existence of the analytic operator-valued Feynman integral Jg"(F )
as an operator from L;(R) to Lo (R) was studied, and Chung, Park and Sk-
oug [7] showed that it can be expressed by the conditional analytic Feynman
integral of F. Further work extending the above £(L1, Lo )-theory with the
conditional analytic Feynman integrals was studied by the author [5] over the
space (C"[0,t],wy,) [9, 11] of the continuous R"-valued paths on [0,#] which
generalizes the space C{[0,¢]. In fact the author [4] introduced the conditional
Wiener integral over C”[0,¢] and derived a simple formula for the conditional
Wiener integral with the conditioning function X,, : C"[0,t] — RV given
by

(1) Xn(z) = (x(to), x(tr), -, 2(tn)),
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where 0 = tg < t; < --- < t, = t, which calculates directly the conditional
Wiener integral in terms of the ordinary non-conditional Wiener integral. Ap-
plying this simple formula to a certain function F' defined on C"[0,t] with the
conditioning function X7 : C7[0,¢] — R?*" defined by Xi(z) = (2(0),z(t)),
he [5] could express the analytic operator-valued Feynman integral Jg"(F) :
Li(R") — Lo(R") in terms of the conditional analytic Feynman integral
Efa[F|X,] of F given X;.

In the present paper we further develop the concepts in [5] with more gen-
eralized conditioning function X, (n > 1) given by (1). For the conditioning
function X,, we proceed to express the analytic £(L1, Lo )-operator valued
Feynman integrals in terms of the conditional analytic Feynman wy,-integrals.
In fact we establish that for certain functions F' on C"[0,t] and for a nonzero
real ¢, the analytic operator-valued Feynman integral Jg"(F ) exists as an el-
ement of £(L1(R"), Loo(R")), the space of the bounded linear operators from
L1(R") to Loo(R"), and it is given by the formula

(Jg" (F)p)(E)
— (—iq)? /R L ETRIFIXG 66 )06 Ui, G
W (i, Ty (€0, €1 &) (E0)dmy (E1) - dim (€0)

for ¢ € L1 (R") and mj-a.e. £ € R", where m/ is the Lebesgue measure over
R", W, is given by

WT(*iqvf’n; (507515 s 7571))

n

_ q 1€ — &-1llz-
(o) oo{o S50

and V¥ is the analytic extension of the probabﬂity density of ¢". Thus JJ"(F)
can be interpreted as an integral operator with the kernel

(77:(1)§Eanfq [F|Xn](§05 515 v ,én)\I/(—’L(L 50 - g)WT(ilQa 7_—;’15 (&07 517 s 7571))

We then provide the conditional analytic Feynman w(,-integral for the cylinder
functions which are important in quantum mechanics and Feynman integration
theories themselves. We note that if ¢" = g, the Dirac measure concentrated at
0 € R, then C"[0,] is identified with the r-dimensional Wiener space C§[0, ¢]
so that our works in this paper generalize those of [7] when n = 1. Furthermore
if n = 1, then most results of this paper can be reduced to those in [5], that is,
the works in this paper also extend the results in the same reference.

2. An analogue of the r-dimensional Wiener space

Throughout this paper let C, C; and C7 denote the sets of the complex
numbers, the complex numbers with positive real parts and the nonzero com-
plex numbers with nonnegative real parts, respectively. Furthermore let my,
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denote the Lebesgue measure on the Borel class B(R) of R. The dot product
on the r-dimensional Euclidean space R” is denoted by (-, -)rr.

For a positive real t let C = C]0,t] be the space of all real-valued con-
tinuous functions on the closed interval [0,¢] with the supremum norm. Let
(C1o,¢], B(C0,t]),w,) denote the analogue of Wiener space associated with
the probability measure ¢ [9, 11], where ¢ is a probability measure on B(R).
Let C" = C"[0,] be the product space of C[0,t] with the product measure wy,.
Since C[0,1] is a separable Banach space, B(C"[0,t]) = [[;_, B(C[0,t]). This
probability measure space (C"[0,t], B(C"[0,t]),w],) is called an analogue of the
r-dimensional Wiener space. For v in L3|0, ] and x in C[0,t] let (v,z) denote
the Paley-Wiener-Zygmund integral of v according to z [9] and let (-, -)2 denote
the inner product over L]0, t].

Lemma 2.1 ([9, Lemma 2.1]). If f : R"™* — C is a Borel measurable function,
then

/ flx(to), z(t1), ..., x(tn))dwy,(z)
C

;/ flug,ugy ..o un)Wi(1, (uo,ul,...,un))dmZ(ul,...,un)dcp(uo),
R JR®

where

(2) WT(A,fn,(uo,ul,... Up))

[N

- A v — - 1|]RT}
= —| ex
Ll:[l?ﬂ(tj—tj 1} p{ Z ti —tj—1

forr € N, X € CF, t, = (to,t1,... tn) with 0 = tg < t1 < -+ < t, < t,
(up,u1,...,up) € RO and = means that if either side exists, then both
sides exist and they are equal.

Now we introduce a useful lemma which plays a key role in the proof of
Theorem 3.2. The proof of it is similar to the proof of Lemma 3.4 in [5].

Lemma 2.2. Fort, = (to,t1,...,tp) with 0 =tg <t} < --- <t, <t, A >0
and £ € R, let X6 : C[0,t] — R be the function given by

Xf(x) = (A" 2a(to) + 6, A7 2a(ty) +&,..., A 2a(ta) +6).
Furthermore let Py be the probability distribution of XM on the Borel class
B(R(""'l)T) of R and suppose that ¢" is absolutely continuous with respect

to the Lebesgue measure my,. Then Pyxe < m(LnH)T and
dP r g dﬁPT 1
(n+1 (505517"'5571):)\2WT(A7tn7(§Oa§17"'agn))d ( 2(5075))
dmy, my,

for m(L"+1)T—a.e. (€0, €1, ..., &) € ROEDT wwhere W, is given by (2).
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3. A simple formula for conditional w;-integrals and the
operator-valued function space integrals

In this section we introduce a simple formula for an analogue of the condi-
tional Wiener integrals over C"[0, t] with a vector-valued conditioning function.

Let F : C"[0,t] — C be integrable and let X be a random vector on C"[0, t]
assuming that the value space of X is a normed space with the Borel o-algebra.
Then we have the conditional expectation E[F|X] of F given X from a well
known probability theory. Furthermore there exists a Px-integrable complex-
valued function ¢ on the value space of X such that E[F|X](z) = (¢ o X)(z)
for wi-a.e. x € C"[0,t], where Px is the probability distribution of X. The
function ¢ is called the conditional wg-integral of I given X and it is also
denoted by E[F|X].

Throughout this paper, let 7, = (to,t1,...,t,) be given with 0 = t; < t; <
.-+ <tp, =t. For any x in C"[0, t] define the polygonal function [z] by

B e = Eoxa @) () + Ty

+ X{to} (8)z(t0)
for s € [0, t], where X(t;_1,t;] and X (¢, denote the indicator functions. Similarly,
for &, = (€0,&1, ..., &) € RHDT define the polygonal function [En] by (3),

where z(t;) is replaced by ¢; for j =0,1,...,n.
In the following theorem we introduce a simple formula for the conditional
w-integrals on C"[0, ] [4].

Theorem 3.1. Let F : C7[0,t] — C be integrable and X,, : C"[0,t] — R+1r
be given by

(4) Xn(z) = (x(to), z(t1),. .., x(tn)).
Then for Px, -a.e. &, € RVT,
E[F|X,)(6) = E[F(z — [2] + [€))],

where Py, is the probability distribution of X, on (RO BRO®HVT)) and
the expectation is taken over the variable x.

Let F': C"[0,t] — C be a function. For notational convenience let

(5) XM(2) = Xo(A 22+ €)
and
(6) FM(z) = FA" 3z +€)

for A > 0 and for & € R". Suppose that F*¢ is integrable over C"[0,¢]. Then,
by Theorem 3.1,
1 -

(7) E[FX)5](6) = BIF(A % (2 — [2]) + [&])]
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for Pyac-a.e. En = (&0,&1,...,6,) € RO where Py is the probability
distribution of X¢ on (RC+D7 BROHDT)) Let

8) (KA(F))(&) = BIF(A"5 (2 — [a]) + [6.])]-

If (K\(F))(&,) has the analytic extension J3 (F)(&,) on C, as a function of
A, then it is called the conditional analytic Wiener wg-integral of F' given X,
with parameter A and denoted by

BN PIX](6) = T3 (F) ()

for &, € R™+Dr Moreover, if for a nonzero real ¢, E9"*[F|X,](&,) has the
limit as A approaches to —iq through C,, then it is called the conditional
analytic Feynman w; -integral of I’ given X,, with parameter q and denoted by

Eanfs [F|Xn](gn) = )\EIzliq Fanwa [FIXn](En)

Let F': C"[0,¢] — C be a measurable function. For any A > 0, ¢ in L(R")
and € in R”, let ¢} (z) = (A" 22(t) + £) and

(EWNEO = [ FH@ )du (o)
where F2¢(x) is given by (6). If I (F)v is in Loo(R") as a function of ¢ and if
the correspondence ¢ — I (F)y gives an element of £ = L(L1(R"), Lo (R")),
we say that the operator-valued function space integral I(F') exists. Next
suppose that there exists an L-valued function which is weakly analytic in
C. and agrees with Iy (F') on (0,00). Then this £-valued function is denoted
by I$"(F) and is called the analytic operator-valued Wiener w],-integral of
F associated with parameter A. Finally, for a nonzero real g, suppose that
there exists an operator J¢™(F) in £ such that for every ¢ in Li(R"), I{"(F)1
converges weakly to Jg" (F))i) as A approaches to —ig through C.. Then Jg"(F)
is called the analytic operator-valued Feynman w; -integral of I with parameter
g. We can take 9 to be Borel measurable [8], and the weak limit and the weak
analyticity are based on the weak* topology on L. (R") induced by its pre-dual
Li(R") [2, 10].
Theorem 3.2. Let the assumptions and notations be as given in Lemma 2.2
and X, be given by (4). For F : C"[0,t] — C suppose that E*™"*[F|X,](&n)
exists for A € C4 and m(L"H)T-a.e. gn e RD7 " and that for each bounded
subset Q0 of C, there exists Mg > 0 such that
9) [E A F| Xn](6n)] < Mo
for all X € Q and m(Ln+1)T—a.e. {n e RHD" - Furthermore suppose that there
ezists a function ¥ on Cy X R” satisfying the following conditions:

(i) for each A >0, ¥(\,n) = %()\%n) form’-a.e. n € R",

L
(i) for my-a.e. n € R", W(A,n) is analytic on C4 as a function of A, and
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(iii) for each bounded subset Q2 of Cy, W(A,n) is bounded for all X\ € Q and
for m-a.e. n €R".
Then for A € Cy, the analytic operator-valued Wiener wi,-integral I (F)
exists as an element of L and is given by

(10) (15" (F)) (€)
Y / B (X0 (€0s v 2 En (€T A €0 — €)
R(+1)r

X Wr (A Ty (0, €15 -+ 6n) )M, (So)dm, (€1) - - dm (€n)

for b € Li(R") and mY -a.e. £ € R", where W, is given by (2). In addition,
suppose that n = 1 and for a nonzero real q, E“"f¢[F|X1](&,&1) exists for
m2-a.e. (&,&1) € R?". Moreover suppose that ¥ can be extended to (Cy U
{—igq}) X R" with the following two additional conditions:

(i) for m%-a.e. n € R", W(A\,n) is continuous at A = —iq as a function of
A, and
(iil)" there exists a (Borel measurable) function ®, € L1(R") satisfying

(TN, n)| < |®q(n)| for all X € Qe and m7-a.e. n € R,
where Qe = {X € C4 : |X\+iq| < €} for some € > 0.

T_

Then the analytic operator-valued Feynman wy,

element of L and it is given by

(1) GEE© = it [ EmhiExE.aee)
x W(—ig, §o — E)Wr(—ig, 71, (§0, &1))dm, (§o)dmT (§1).
Proof. For A > 0,v¢ € L;(R") and £ € R"

integral Jy"(F) exists as an

(IN(F)¥)(€) = - E[F$, | X004 (X0 () du ()

= [ EPEIP G ),
R(n+1)r "

where X ¢ is given by (5) and Py ¢ is the probability distribution of XM on
the Borel class of R+ For En = (&, €1,...,&,) € RHDT

BIFMg)8 X)4)(6) = BIF(AT2 (z — [2]) + [E) e (A2 (@ — [2])(t) + [6:](1))]

by (7), where K (F) is given by (8). By Lemma 2.2

(L (F))(€) = A3 / (KA(F) (Eov 61 ) (E) W (N, 7oy (€00 61

R(n+1)r

D0 (B (6o — €))dm (Eo)dm (1) - (€0).

dmf

—>&n))




OPERATOR-VALUED FUNCTION SPACE INTEGRALS 909
Now suppose that U satisfies (i), (ii) and (iii). By (i)

(L (F))(€) = AF / (BN () (Eos €1, E)0(E) TN, €9 — €)

R(n+1)r
X LV;(A’f%’(§Oa€1a'"agn))dnlz(go)dniz(gl)'"dﬂiz(gn)
Let 2 be a bounded subset of C; containing A. Then for m}-a.e. £ € R"

[(I\N(F)¥)(€)] < A% M, [|[¥|ay 00l [ 2, (&)

where ||¥||q, 0o denotes the essential supremum of ¥ on Q) x R", so that
I(F) € Loo(R") and Iy(F) € L(L1(R"), Loo(R7)). For v € Ly(R") let
(QA(F)Y)(€) be the right hand side of (10) for (A, €) € C4 x R™ and let Q be
any bounded subset of C;. By the same method

r A o
12 QO] < Mol lliee (24

for all A € Q and m7-a.e. £ € R” so that QA(F)yY € Loo(R") and QA (F) €
L(L1(R"), Loo(R")) for A € C. Using the same method as used in the proof
of Theorem 3.5 in [5] we can prove that I3"(F) exists and I§"(F) = Qx(F)
for A € C;. The remainder part of the theorem follows from Theorem 3.5 in
[5]. O

Letting ¥(\,n) = (325)% exp{—525 |02} for & > 0, A € C; and n € R",

22
we have the following corollary from Theorem 3.2.

Corollary 3.3. Let X, be given by (4). Moreover let ¢" be normally dis-
tributed with the mean vector 0 € R” and the nontrivial variance-covariance
matriz oI, where o > 0 and I, is the r-dimensional identity matriz. For
F : C"[0,t] — C suppose that E“™>[F|X,](&,) satisfies (9) in Theorem 3.2.
Then for A € C, the analytic operator-valued Wiener wg,-integral I$™(F) ex-
ists as an element of L and is given by

(13)  (I3"(F)Y)(E)
>\ g anw )y .
( >/R<n+1>TE [FIXn] (60,1, &)V (ENWR(N, T,

2mo?
Mg — ElIE-
2

(50,51,...,§n))exp{ 20

for v € Li(R") and mY -a.e. £ € R", where W, is given by (2).

Theorem 3.4. If the conditions (iii) and (iii)’ in Theorem 3.2 are replaced by
the condition: for each bounded subset Q of C, there exists a (Borel measurable)
function &g € L1(R") satisfying

(14) [T\, n)| < |Pa(n)| for all X € Q and m}-a.e. n € R",

then the conclusions of Theorem 3.2 hold true.
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Proof. Suppose that ¢" is absolutely continuous and ¥ satisfies (i) and (ii) of
Theorem 3.2. By the same method as used in the proof of Theorem 3.2

(LL(F))(€) = A¥ / (BA(F)) (Eos €1 e (En) TN, o — €)

R(n+1)r
X WT()‘a 7_-’713 (603 61) L 7§n))dmz(50)dmz(fl) e meL(‘fn)
for A > 0, ¢ € L1(R") and £ € R", where K»(F) is given by (8). Let Q2 be a
bounded subset of C containing A\. Then for mj-a.e. £ € R"

(WO < A Ma, [ (6] Ba (60— W (07

(€0 &1, - -5 &n))dm (§o)dm, (§1) - - - dm,(§n)

by (14), where € is replaced by Q. For j =1,...,n — 1, a simple calculation
shows that

A ' Ry
[2”\/ (tj+1 —t5)(t; tjl):| /Texp{ 2( tjt1—t;
JRLEL S )y

tj—ti1

[ A ] { Algj1 — & |}
2”(J+1 J+1 ]1)

Hence

(I (F)6)(€)] < A% Ma, ) [ 10l 2, (6 - 9)

conf Bl L

)\ T
< Mo [0, e [0y 5= )

so that In(F)Y € Loo(R") and I\(F) € L(L1(R"), Loo(R")). For v € L1(R")
let (Qx(F)¥)(€) be the right hand side of (10) for (A, §) € C4 x R". Using the
same method as used in the proof of Theorem 3.2, we can prove the existence
of I{™(F') and the equality I{"(F) = Qx(F) for A € C4 if (12) is replaced by
the following inequality

S (Red)

(@AE)E)] < o, ¥l (5

which is easily obtained for A € € and m’-a.e. £ € R", where Q) is arbi-
trary bounded subset of C;. The remainder part of the theorem follows from
Theorems 3.5 and 3.7 in [5]. O

Theorem 3.5. Let n > 2, the assumptions be as given in Lemma 2.2 and X,
be given by (4). For F : C"[0,t] — C suppose that E*"“*[F|X,](&,) exists for



OPERATOR-VALUED FUNCTION SPACE INTEGRALS 911

AeCy and m(L"H)T-a.e. 5,, e RtD7 " and that for each bounded subset Q0 of
C., there exists a (Borel measurable) function Vg € L1(R"") such that

(15) |Ean’w>\ [F|X’n](€03615 cee a£n—1;€n)| S |\I/Q(£Oa€15 s a€n—1)|
for all X € Q and m(LnH)T—a.e. (€0,&1, ..., &n) € ROV Burthermore suppose

that there exists a function ¥ on C; x R” satisfying conditions (i), (ii), (iii)
of Theorem 3.2. Then for A € C, the analytic operator-valued Wiener wy,-
integral 13" (F') exists as an element of L and is given by (10). In addition,
suppose that for a nonzero real ¢, E*"fa [F|Xn](gn) exists for m(LnJrl)T—a.e. En €
R+ Moreover suppose that U can be extended to (Cy U {—iq}) x R” with
the condition (i)’ of Theorem 3.2. Then the analytic operator-valued Feynman
wi,-integral J{"(F) evists as an element of L and it is given by (10) replacing

X and Ex by —iq and E“e, respectively.

Proof. Suppose that ¢" is absolutely continuous and ¥ satisfies (i), (ii) and
(iii) of Theorem 3.2. By the same method as used in the proof of Theorem 3.2

<A@WM@=A€/ B () (Eor 0 Ents E0)0(E) TN €0 — )

R(n+1)r

X Wi (AT, (€0, 615 - -5 &) )dm (§o)dm (&1) - - - dmip (§n)

for A > 0, ¢ € L1(R") and £ € R", where K»(F) is given by (8). Let Q2 be a
bounded subset of C containing A\. Then for mj-a.e. £ € R”

EEN < A1 | T] 52| [ 19660

- ti—tj-1)
=1
X |Wa, (0,81, - -+ §n—1)|dm], (§o)dmT (§1) - - - dm, (§n)

. - A :
= E Wl e ¥ o 95 | 1] 25|
=1 J j—1

where ||¥]|q, 0 denotes the essential supremum of ¥ on 2y x R” so that
IN(F)Y € Loo(R") and Iy(F) € L(Li(R"), Loo(R")). For 1 € Li(R") let
(QA(F)Y)(€) be the right hand side of (10) for (A,&) € C4 x R". Using the
same method as used in the proof of Theorem 3.2, we can prove the existence
of I§"(F') and the equality I§{"(F) = Qa(F) for A € C, if (12) is replaced by
the following inequality

[(@AF)P)(E)] < A= 1P|

TNt
aoe ¥l 1, |
1( ) 1(R7) JI;[1 27T(tj _ tj—l)
which is easily obtained for A € 2 and mj-a.e. £ € R", where ) is arbitrary
bounded subset of C;. Furthermore suppose that ¥ satisfies (i)’ of Theorem
3.2. For ¢ € Li(R") let (Jg"(F)¥)(§) be the right hand side of (10) for

¢ € R" where X\ and E*"» are replaced by —iq and E**f_ respectively, and
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let Q. = {A € CL :|\+iq| <€} for some € > 0. Then, by (ii)’ of Theorem 3.2,

[(Jg" (F))(©)l
< 0l 19l ¥ ol | TT g |
= € ellLy 1 J 27T(fj _ tj—l)
7=1
; T lalte %
< (lal + )7 ¥ a0l ¥, £y wery 1]l 2y ) [H 2t — 1)
j=1

which implies Jg"(F)y € Loo(R") and JI"(F) € L(L1(R"), Lo(R")). The
remainder part of the theorem follows from Theorem 3.5 in [5]. O

By Theorem 3.5 we can obtain the following corollary.

Corollary 3.6. Letn > 2, X,, be given by (4) and ¢" be the measure as given
in Corollary 3.3. Suppose that F : C"[0,t] — C satisfies the conditions in
Theorem 8.5. Then for nonzero real q, the analytic operator-valued Feynman
wy,-integral Jg”(F) exists as an element of L and it is given by the right hand
side of (13) replacing X and B by —iq and E*a, respectively.

Using the same method as used in the proof of Theorem 3.5, we can prove
the following theorem.

Theorem 3.7. If the conditions (iii) and (15) in Theorems 3.2 and 3.5, re-
spectively, are replaced by (14) in Theorem 8.4 and the following condition:
for each bounded subset Q of C,., there exists a (Borel measurable) function
Ug € Ll(R(”fl)T) such that

|Eanw)\ [Fan](é-O;El’ cee ;gn—lagn)l < |@Q(€1a s agn—l)l

for all A € Q and m(Ln+1)T—a.e. (€o,61, ---,&n) € ROHDT respectively, then the
statement of Theorem 3.5 holds true.

Theorem 3.8. Let n > 2, the assumptions be as given in Lemma 2.2 and X,
be given by (4). For F : C"[0,t] — C suppose that E*"">[F|X,](&,) satisfies
(9) in Theorem 3.2. Let

for wi-a.e. x € CT(0,t], where f € Li(R""). Furthermore suppose that there
exists a function U on Cy xXR" satisfying conditions (1), (i) and (iii) of Theorem
3.2. Then for A € C, the analytic operator-valued Wiener wg,-integral Ii™(B)
exists as an element of L and is given by

16) (18" (B)6)(©)
25 /R<n+1>r F&o, &1, En 1) B F| X0 (€0, €1y -5 En1, En)0(ER)
X WA, €0 — Wi\ 7, (€0, &1, En))dm (Eo)dm (£1) - dm (&)
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for ¢ € Li(R") and m’ -a.e. £ € R". In addition, suppose that for a nonzero
real ¢, E4a [F|Xn](gn) exists for m(LnJrl)T—a.e. {n e RO - Moreover sup-
pose that U can be extended to (Cy U {—iq}) x R" with the condition (i)’ of
Theorem 3.2. Then the analytic operator-valued Feynman wg-integral Jg"(B)
exists as an element of L and it is given by the right hand side of (16), where
X and Ex are replaced by —iq and E*fa, respectively.

Proof. For A > 0 and &, = (0,61, ..,&,) € ROFDr
EAB)E) = | O3 = [Dto) + [al(to).- - A3 (@ = al) (ta-1)

Gt ) PO (2 = [a]) + [E])duwy ()
= Fl60-somt) [ PO [a]) + G Ddul (0

= f(&0s- -, En 1) (KA(F)) (&),

where K is given by (8). Since f(&o,...,&n—1) is independent of A € C, the
existence of E4"*[B|X,](&,) follows from the existence of E4"“*[F|X,,](&,)
and

B [BIXu](6n) = (0,61, €a1) B [FIX](6)-
Furthermore, for any bounded subset €2 of C,
| B A BIX ] (€n)| = |£ (60, €y s &) [BO [FI X0 (60)]
S Mﬂ|f(§05§15 e 5§n71)|

for all A € Q and m\" "V -ae. &, = (&,&,...,&) € RO+DT The theorem
now follows from Theorem 3.5. O

By Corollary 3.3 and Theorem 3.8, we have the following corollary.

Corollary 3.9. Let n > 2 and X,, be given by (4). Moreover let ¢" be the
measure as giwen in Corollary 3.3. Suppose that B is as given in Theorem
3.8. Then for nonzero real q, the analytic operator-valued Feynman wg-integral
J3"(B) exists as an element of L and it is given by

(17)

(Jg" (B)Y)(§)

<27Tla2> 507515 o 7§n71)Eanfq [F|Xn](§05§15 o 5§n717§n)

R(n+1)r
e el AL

2
for ¢ € Li(R") and mY -a.e. £ € R", where W, is given by (2).
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By the same method as used in the proof of Theorem 3.8, we obtain the
following theorem from Theorem 3.7.

Theorem 3.10. Letn > 2, the assumptions be as given in Lemma 2.2 and X,
be given by (4). For F : C"[0,t] — C suppose that E*™">[F|X,](&,) satisfies
(9) in Theorem 3.2. Let

D(x) = f(x(t1), ..., z(tn-1))F(2)
for wh-a.e. x € CT[0,t], where f € Li(R"=V7). Furthermore suppose that

there faxists a function ¥ on Cy x R" satisfying conditions (i), (ii) of Theorem
3.2 and (14) of Theorem 3.4. Then for A € C., the analytic operator-valued
Wiener wi,-integral I{"(D) ezists as an element of L and is given by (16),
where f(€0,&1,...,&n—1) is replaced by f(&1,...,&n—1). In addition, suppose
that for a nonzero real q, B [F|Xn](gn) exists for m(L"+1)T—a.e. &, € R(vHDr,
Moreover suppose that U can be extended to (C;U{—iq})xR" with the condition
(ii)" of Theorem 3.2. Then the analytic operator-valued Feynman w,-integral
Jg"(D) exists as an element of L and it is given by the right hand side of
(16) where X\, E*™x and f(&o,&1,--.,&n—1) are replaced by —iq, E“fa and

f&, ... &), respectively.

Remark 3.11. The function ¥ satisfying the conditions in Theorems 3.2, 3.4,
3.5, 3.7, 3.8 and 3.10 exists [5]. We note that such a function which is not a
normal density can be obtained.

4. The conditional w,-integrals of bounded functions and the
operator-valued function space integrals

Throughout this section, we assume that » = 1. Let M = M (L3[0,t]) be
the class of all C-valued Borel measures of bounded variation over Ls[0,¢] and
let Sy, be the space of all functions F' of the form; for o € M

(18) F(x) = /L o exp{i(v, x)}do(v)

for wy-a.e. x € C[0,t]. Using the same method in [3], it can be shown that
Su,, is a Banach algebra. Let l\A/I(R'V) be the set of all functions ¢ on R defined
by

(19) o(u) :/ exp{i(z, uyr~ dp(z),
RY
for u € R, where p is a complex Borel measure of bounded variation over R7.
C _ 1
For each ] = ].,. Loy let Oé](S) = \/ﬁx(tj—latj](s> where 0 S S S t.

Let V be the subspace of Ly[0,t] generated by {a1,...,a,} and let V1 denote
the orthogonal complement of V. Let P and P+ be the orthogonal projections
from L2[0,t] to V and V1, respectively. Then for v € L0, ]

v —Pv="Po.
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Moreover it is not difficult to show that
(v, [2]) = (Pv, )

for z € C[0,t]. For v € Ly[0,t] and &, = (£0,&1,---,&n) € R we can show
that

n

(20) (v, [&a]) =D _(P)(t;)(& — &)

j=1

Throughout this paper, let {vi,v2,...,vy} be an orthonormal subset of
L»[0,] such that {P+vi,..., Ptv,} are independent. Let {ei,...,e,} be the
orthonormal set obtained from {P1w1,..., PLUV} by the Gram-Schmidt or-
thonormalization process. Now, for [ =1,...,, let

v
(21) Pro =Y aye;
j=1

be the linear combinations of the e;s and let

Q11 Q12 o Oy

Q21 Qa2 oy
A =

Qy1 Qy2 trr Qyy

be the coefficient matrix of the combinations. Let T4 : RY — R and Tyr :
RY — RY be given by

(22) Ta(z) = zA and Tyr(z) = zAT

where z is arbitrary row-vector in RY and A7 is the transpose of A. We note
that A is invertible so that T4 and T4z are isomorphisms.

For convenience we introduce useful notations from the Gram-Schmidt or-
thonormalization process. For v € Lo[0,t], we obtain an orthonormal set {eq,
..., €y, eqq1} as follows; let

(v,e5)2 forj=1,...,v
23 ci(v) = .
9 0 ={ s v

and

Spp— [U - icj (U)ej]

¢y+1(v)
if ¢y41(v) # 0. Then

y+1 y+1

(24) v="7 ¢j(v)ej and [ofl3 =D [e;(v)]*.

1 j=1

+

<.
I
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We note that the equalities in (24) hold trivially for the case c¢,41(v) = 0. For
v € Lo[0,1] let

(0,2) = ((v1,2), ..., (vy,x)) for z € C0,t].

Theorem 4.1. Let X,, be given by (4) with r = 1 and G(x) = F(x)¢(7, )
for wy-a.e. x € C[0,t], where F € S, and ¢ € M(R™) are given by (18) and
(19), respectively. For v € Ls[0,t] let c;(PLv) be given by (23), where v is
replaced by Prv for j = 1,...,7. Then for A € C4, E¥WA [G|Xn](gn) exists
for m’i"'l—a.e. {n € R™L and it is given by

(25) E"™A G| X)(6)

. - Lo 1 )
-/ N /. exp{l[(?}, €) + (= (@ €] - o5 (1A )2
2((P40), Ta (e + [P 01B] fdp(:)do (o),

where &(Ptv) = (c1(Ptv),...,cy(Ptv)) and Ta is given by (22). Further-
more, for nonzero real q, E**fa [G|Xn](gn) exists and it is given by the right-

hand side of (25) where X\ is replaced by —iq. In particular, if n = 1, then
E1(G|X1) (€, €1) is given by

(26)  E“™i[G|X1](4, &)

A e T ds@ﬂ/ o] + 53

=1

(; zlalj) + 22(/ s)ds — % /Otv(s)ds /Ot ej(s)d3>
X <lzj; Zlalj) + /Ot[v(s)]st - % {/Otv(s)ds} 2} }dp(z)do‘(v)

for m3 -a.e. (&,&1) € R?, where z = (21,...,2) and the ayjs are as gven in
(21).

Proof. The equation (25) and existence of E*"f4[G|X,] follow from Theorem
2.6 in [6]. To prove the remainder part of the theorem, suppose that n = 1 and
let & = (€0,&1). Then for v € L]0, t]

@7) (v, [E]) = & t&) /O o(s)ds.

Furthermore

1 t
Plo=v—Pv=0v-— (v,a1)201 = v — (;/ U(S)dS) X(0,4]
0
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so that for 7 =1,...,7,

1 J"U: J"()6‘2: t’US@S S—l t’US S t@‘S S
@) P = (Prue = [ o= [ o [ e

and

1,02 2 2 2 ! 2 L ’
@) 1Pl =0l - (. alanl = [ oods — 7| [ ot
The equation (26) now follows and hence the proof is completed. (I

Corollary 4.2. Let the assumptions and notations be as given in Theorem 4.1.

(1) If o is concentrated on V, then for nonzero q and m’L’H—a.e. En =
(503613 ey €n) S Rn-‘rl;

prrexE - [ | exp{z'[iv@n(@- &)

Jj=1

e BED | + 5 TR (o)

and

_ Y
E™4 G X1] (€0, &) = /Lz[O,t] /]Rv exp{i[v(t)(fl — &) + 8 7 S sz

y /Ot Uj(s)ds} + 2%1 Jz: (lzj; zlalj) Q}dp(z)da(v).

(2) If o is concentrated on V =+, then for nonzero real g,

e = [ [ enfite @D + LITAGIE:

+ 2(c(v), Ta(2))r> + Ivllgl}dp(Z)dU(v)
and

B G X1 (60,€1)
2

* Jopo T2 [t %le
+2;</0 v(s)ej(s)ds) (ézl%) ]}

(3) If vy € VX forl=1,...,7, then for nonzero real q,
EMa(G X (€n)

G

=1
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1 -
/ [ ewlit 6D + o l1:1 + 2P0 + 1Pl
LZOt] RY qt
z)do(v),

where &(PLv) = ((Prv,v1)a, ..., (PLtv,v,)2), and
E™a (G| X1] (¢, 61)

ool o B[
X v;(s)ds — %/Otv(S)dS /Ot Uj(s)ds) + /Ot[“(s)]2ds - % [/Otv(s)dsr]}

dp(z)do(v).

Proof. (1) If o is concentrated on V, then for g-a.e. v € L3[0,t], Pv = v and
PLv =0 so that by (20)
(0, [6]) = D_(PU)(#))(& = &-1) = D v(t)(& — &)
j=1 j=1
and for j=1,...,v
cj(Pv) = (Prv,e;)s = 0.

The results now follow from Theorem 4.1.

(2) If o is concentrated on V4, then for o-a.e. v € Ls[0,t], PYv = v and
Pu = 0 so that (v, [§,]) = 0 by (20). The results now follow from Theorem 4.1.

(3) Ifv; € V- for I = 1,...,7, then Py, = 0 so that by (20)

(17, [gn]) = ((vlﬂ [gn])ﬂ ceey (U'Yﬂ [fn])) = (Oﬂ cey 0)

which implies (z, (7, [§,]))r+ = 0. Furthermore, PLv; = v; and ¢; = v; which
implies that A is the identity matrix. By Theorem 4.1, the results follow. [

Remark 4.3. (1) We note that there exist orthonormal vectors vi, v, ..., vy in
L»[0,] such that PLvq, PLos, ..., PLv, are independent [6].
(2) If v; € V for some I, then Ptv; = 0 and hence Ptuvy,... , PLv, are

dependent. In this case, the proof of Theorem 4.1 can be modified.
(3) Letting p = &g or o = g, we can obtain E"f4[F| X,,] or E*™a[¢(T, )| X..],
respectively [6, Theorems 2.1 and 2.4].

Since E“"A[G|X,](&,) is bounded by ||p|[|o|, the next theorem follows
immediately from Theorems 3.2 and 4.1.

Theorem 4.4. Let r = 1, the assumptions be as given in Lemma 2.2, X,
be given by (4) and G be as given in Theorem 4.1. Furthermore suppose that
there exists a function U on C4 x R satisfying the conditions (i), (ii) and (iii)
in Theorem 3.2. Then for A € C4, the analytic operator-valued Wiener w,,-
integral I§"(G) exists as an element of L and is given by (10) with r = 1,
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where B [F|X,] is replaced by E*">[G|X,] which is as given in (25). In
addition, suppose that n =1 and U can be extended to (C; U {—iq}) x R with
the conditions (ii)" and (iii) of Theorem 3.2. Then the analytic operator-valued
Feynman w,-integral J§"(G) exists as an element of L and it is given by (11)
with r = 1, where E*a[F|X] is replaced by E*fa[G|X 1] which is as given in
(26).

Corollary 4.5. Let r =1, X,, be given by (4) and G be as given in Theorem
4.1. Moreover let ¢ be normally distributed with mean 0 and variance o. Then
for X € C4, the analytic operator-valued Wiener wy-integral 13" (G) exists as
an element of L and is given by (13) with r = 1, where E*"“>[F|X,,] is replaced
by B [G|X,,] which is as given in (25).

Remark 4.6. Under the assumptions as given in Corollary 4.5, we can prove the
existence of the analytic operator-valued Feynman wg-integral Jg" (G) through
direct calculations, but they are tedious.

By Theorems 3.4 and 4.1 we can easily obtain the following theorem.

Theorem 4.7. If, in Theorem 4.4, the conditions (iii) and (iii)’ of Theorem
3.2 are replaced by (14), then conclusions of Theorem 4.4 hold true.

By Theorems 3.8 and 4.1 we can also obtain the following theorem.

Theorem 4.8. Let r =1, n > 2, the assumptions be as given in Lemma 2.2,
X, be given by (4) and G be as given in Theorem 4.1. Let

BG(Z'> = f(:L'(t()), s ,$(tn,1))G($)

for wy-a.e. x € C[0,t], where f € Li(R™). Furthermore suppose that there
exists a function ¥ on Cy x R satisfying the conditions (i), (ii) and (iii) of
Theorem 3.2. Then for A € C,, the analytic operator-valued Wiener w,-
integral 1$"(Bq) exists as an element of L and is given by (16) with r = 1,
where B [F|X,] is replaced by E*">[G|X,] which is as given in (25). In
addition, suppose that for nonzero real q, ¥ can be extended to (C; U{—iq}) x
R with the condition (ii)’ of Theorem 3.2. Then the analytic operator-valued
Feynman wy-integral Jg"(Bg) ezists as an element of L and it is given by the
right hand side of (16) with r = 1, where A and E“">[F|X,] are replaced by
—iq and E°4[G|X,)], respectively.

Corollary 4.9. Let r =1, n > 2, X,, be given by (4) and Bg be as given in
Theorem 4.8. Moreover let ¢ be normally distributed with mean 0 and variance
a?. Then for nonzero real q, the analytic operator-valued Feynman w.,-integral
J3"(Bg) exists as an element of L and it is given by the right hand side of (17)
with v = 1, where E4[F|X,,] is replaced by E*f4[G|X,] which is as given
in Theorem 4.1.

The following theorem now follows from Theorems 3.10 and 4.1.
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Theorem 4.10. Let r =1, n > 2, the assumptions be as given in Lemma 2.2,
X, be given by (4) and G be as given in Theorem 4.1. Let

De(z) = f(z(t1), .. 2(tn-1))G(2)

for wy-a.e. x € C|0,t], where f € Li(R"™'). Furthermore suppose that there
exists a function U on Cy x R satisfying the conditions (i), (i) of Theorem
3.2 and (14) of Theorem 3.4. Then for A € C., the analytic operator-valued
Wiener w,-integral I{"(Dg¢) exists as an element of L and is given by (16) with
r =1, where E*™ [ F|X,] and f(&o,&1,. .. ,&n—1) are replaced by B> [G|X,,]
and f(&1,...,&n—1), respectively. In addition, suppose that for a nonzero real
q, U can be extended to (C4 U{—iq}) x R with the condition (ii)’ of Theorem
3.2. Then the analytic operator-valued Feynman w,-integral Jg"(Dg) erists
as an element of L and it is given by the expression of I{"(Dg), where A is
replaced by —iq.

5. The conditional w,-integrals of cylinder functions and the
operator-valued function space integrals

In this section, we investigate the conditional analytic Wiener and Feynman
wy-integrals of cylinder functions and prove that the operator-valued function
space integrals of those functions can be expressed by the conditional w,-
integrals.

We now have the following theorem from (22), (27), (28), (29) and Theorem
3.3 of [6].

Theorem 5.1. Let X,, be given by (4) with r = 1 and H(x) = F(x)f(7,z),
where f € L,(R)(1 < p < o0) and F is given by (18). For v € Ls[0,t] let
cj(Ptv) be given by (23), where v is replaced by Ptv for j = 1,...,7. Then
for X e Cy, E*"[H|X, ]( &) eists for &, € R™ and it is given by

(30) E“NH| X ()

~

—

’ FEED) + Tar () exp i, [E2])
(27T> /Lg[Ot R {
[Z dizy + (P = [P0l i (),

where z = (21,...,2y) and Tz is given by (22). In particular, if p = 1,
then for nonzero real q, E®fa [H|Xn](gn) exists and it 1s given by the right
hand side of (30) where X is replaced by —iq. Furthermore, if n = 1, then
E*™[H| X4](&o,&1) is given by

(31)

EH|X4](6o,61)
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(Y G- [ : ) (v
- (27T> /LQ[O,t]/]R'Yf( t (/0 v1(s)ds,...,/0 vy(s)ds | + ;
i t
aljzj"“’ZQijj))exp{’i§1;go/’U(s)ds{-%[
j=1 0 4

[Az‘zj + /Ot
o)eshds = 3 [ wtsyis [ ei)as] - [wtsras 3 [ sias]
} }dmz(z)da(v)

for (£0,&1) € R?, where the ayjs are as given in (21).

v
=1
2

Using the same method as used in the proof of Corollary 4.2, we can prove
the following corollary.

Corollary 5.2. Let the assumptions and notations be as given in Theorem 5.1.

(1) If o is concentrated on V, then for A € C4 and 5_;1 = (£,&1,...,&n) €
Rn—i—l

i€ = (2) [ o L @D 4 Tar e e

<3 ut)(E ~ 1) = el fam (do(0)

and, for n =1 and for (&,&) € R?
E“ H| X1] (o, &1)

(2 [ ([ i)

+ (i 12, . . .,;O"szj>) exp{z‘v(t)(g1 — &) — %”Zh%&v}

j=1
dm] (z)do(v)
where z = (21,..., 2y).
(2) If o is concentrated on V*, then for X\ € Cy and for &, € R+l

e = (o) [ o LA ED 4 Tar e

~

% {ZW% + e ()]* - |v||%} }dmZ(z)da(v)

=1
where z = (z1,...,2y), and for n =1 and for (&,&1) € R?,
E“"H|X1](&o,61)
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_ (%)Q/LZ[O}] /Rvf(@(/otvl(s)ds""’/ot?}”(s)ds)
(S ool o [

X ej(s)ds] ’ - /Ot[v(s)]2ds} }dmz(zl, ooy 2y)do(v).

(3) Ifv, e VL forl=1,...,~, then for A € Cy and for &, € R,
E*AH|X,)(6n)

(50) [ 11t € [
== Z1y. .., 2y) €XP — 1z
2 La[0,¢] JRY ! ZA =1 ’

+ ¢; (PHv)]? - ||Plv|§} }dmg(zl, ooy 2y)do(v)

and for n =1 and for (&,&) € R?,
B [H|X1](&o, 1)

< >Z/L2[Ot wazl,..., )eXP{ fltéo/()v(s>ds
1 1
0
_ /Ot[v(S)]st + % [/Otv(s)dsr] }dmZ(zl, ..y 2y)do(v).

Letting 0 = §p which is the Dirac measure concentrated at 0 € L2[0, t], we
obtain the following corollary.

Corollary 5.3. Let X,, be given by (4) with r = 1 and H(x) = f(¥,x) where
f e L,R")(1 < p < o0). Then for X € Cp, E"[H|X,](&,) exists for
gn € R"*! and it is given by

(32) E*™H|X,)(6)

_ (%) [ H@ED + T exn{ -5 1%, fam ),

where Tar is given by (22). In particular, if p = 1, then for nonzero real q,
Efa[H|X,](€,) exists and it is given by the right hand side of (32) where A
is replaced by —iq. Furthermore, if n = 1, then E*""*[H|X1](&o,&1) is given
by

ENH|X4](6o, 61)
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Q) ([ o)
N (éaljzj,...é%zj» exp{gunﬂ%w}dmg(z)

for (£0,&1) € R?, where z = (z1,...,2,) and the cyjs are as given in (21).

Theorem 5.4. If, in Theorem 4.4, G is replaced by H(p = 1) which is as
giwen in Theorem 5.1, then the conclusions of Theorem 4.4 hold true, where
EmA[H|X,] and E“fa[H|X,] are given by (30) and (31), respectively, replac-
ing A by —iq.

Proof. For X € C, for &, € R™ and for v € Ly[0,1],

: & 1 [¢ : 1.\12 L2
exp{i(e [5n1>+5[;m+cj<7> o - [Pl |
Re A 5 ReA L =l 9
— e -T2 32 - 2SR 1Pl - S (Precf] | <1
Jj=1 j=1
by (23) and the Bessel’s inequality so that
anw g A % - g
s HXIEN < lol(50) [ 6D + Tar (Gl ()

by Theorem 5.1. Let €2 be a bounded subset of C and take Mq > 0 such that
IA| < Mg for all A € Q. Then for A € Q and for £, € R™1,

B B HXNE) < |der((AD) Il (52 )

by the change of variable theorem. The theorem now follows from Theorems
3.2 and 5.1. (]

Corollary 5.5. If, in Corollary 4.5, G is replaced by H which is as given in
Theorem 5.4, then the conclusion of the corollary holds true, where E*™">[H |
X, is given by (30).

By Theorems 3.4, 5.1 and (33) we can easily obtain the following theorem.

Theorem 5.6. If, in Theorem 5.4, the conditions (iii) and (iii)’ of Theorem
3.2 are replaced by (14), then conclusions of Theorem 5.4 hold true.

By Theorems 3.8, 5.1 and (33), we can also obtain the following theorem.

Theorem 5.7. If, in Theorem 4.8, G is replaced by H which is as given in The-
orem 5.4, then the conclusions of Theorem 4.8 hold true, where E*™"*[H|X,,]
and Ef[H|X,] are as given in Theorem 5.1.
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Corollary 5.8. If we replace G in Corollary 4.9 by H which is as given in The-
orem 5.4, then the conclusion of the corollary holds true, where Efe[H|X,,]
s as given in Theorem 5.1.

The following theorem now follows from Theorems 3.10, 5.1 and (33).

Theorem 5.9. If, in Theorem 4.10, G is replaced by H which is as given in
Theorem 5.4, then the conclusions of Theorem 4.10 hold true, where E*™">[H |
X,] and E“*fa[H|X,,] are as given in Theorem 5.1.
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