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OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA

CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER

SPACE II

Dong Hyun Cho

Abstract. In the present paper, using a simple formula for the condi-
tional expectations given a generalized conditioning function over an ana-
logue of vector-valued Wiener space, we prove that the analytic operator-
valued Feynman integrals of certain classes of functions over the space
can be expressed by the conditional analytic Feynman integrals of the
functions. We then provide the conditional analytic Feynman integrals
of several functions which are the kernels of the analytic operator-valued
Feynman integrals.

1. Introduction

Let r be a positive integer and let Cr
0 [0, t] [7] denote the r-dimensional

Wiener space. On the space Cr
0 [0, t] Cameron and Storvick [1] introduced a

very general analytic operator-valued function space Feynman integral Jan
q (F ),

which mapped an L2(R
r)-function ψ into an L2(R

r)-function Jan
q (F )ψ. In

[2, 10] the existence of the analytic operator-valued Feynman integral Jan
q (F )

as an operator from L1(R) to L∞(R) was studied, and Chung, Park and Sk-
oug [7] showed that it can be expressed by the conditional analytic Feynman
integral of F . Further work extending the above L(L1, L∞)-theory with the
conditional analytic Feynman integrals was studied by the author [5] over the
space (Cr[0, t], wr

ϕ) [9, 11] of the continuous Rr-valued paths on [0, t] which
generalizes the space Cr

0 [0, t]. In fact the author [4] introduced the conditional
Wiener integral over Cr[0, t] and derived a simple formula for the conditional
Wiener integral with the conditioning function Xn : Cr[0, t] → R

(n+1)r given
by

Xn(x) = (x(t0), x(t1), . . . , x(tn)),(1)
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where 0 = t0 < t1 < · · · < tn = t, which calculates directly the conditional
Wiener integral in terms of the ordinary non-conditional Wiener integral. Ap-
plying this simple formula to a certain function F defined on Cr[0, t] with the
conditioning function X1 : Cr[0, t] → R

2r defined by X1(x) = (x(0), x(t)),
he [5] could express the analytic operator-valued Feynman integral Jan

q (F ) :
L1(R

r) → L∞(Rr) in terms of the conditional analytic Feynman integral
Eanfq [F |X1] of F given X1.

In the present paper we further develop the concepts in [5] with more gen-
eralized conditioning function Xn(n ≥ 1) given by (1). For the conditioning
function Xn we proceed to express the analytic L(L1, L∞)-operator valued
Feynman integrals in terms of the conditional analytic Feynman wr

ϕ-integrals.
In fact we establish that for certain functions F on Cr[0, t] and for a nonzero
real q, the analytic operator-valued Feynman integral Jan

q (F ) exists as an el-
ement of L(L1(R

r), L∞(Rr)), the space of the bounded linear operators from
L1(R

r) to L∞(Rr), and it is given by the formula

(Jan
q (F )ψ)(ξ)

= (−iq)
r
2

∫

R(n+1)r

Eanfq [F |Xn](ξ0, ξ1, . . . , ξn)ψ(ξn)Ψ(−iq, ξ0

− ξ)Wr(−iq, ~τn, (ξ0, ξ1, . . . , ξn))dm
r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn)

for ψ ∈ L1(R
r) and mr

L-a.e. ξ ∈ Rr, where mr
L is the Lebesgue measure over

Rr, Wr is given by

Wr(−iq, ~τn, (ξ0, ξ1, . . . , ξn))

=

[ n∏

j=1

q

2πi(tj − tj−1)

] r
2

exp

{
iq

2

n∑

j=1

‖ξj − ξj−1‖
2
Rr

tj − tj−1

}

and Ψ is the analytic extension of the probability density of ϕr. Thus Jan
q (F )

can be interpreted as an integral operator with the kernel

(−iq)
r
2Eanfq [F |Xn](ξ0, ξ1, . . . , ξn)Ψ(−iq, ξ0 − ξ)Wr(−iq, ~τn, (ξ0, ξ1, . . . , ξn)).

We then provide the conditional analytic Feynman wr
ϕ-integral for the cylinder

functions which are important in quantum mechanics and Feynman integration
theories themselves. We note that if ϕr = δ~0, the Dirac measure concentrated at
~0 ∈ Rr, then Cr[0, t] is identified with the r-dimensional Wiener space Cr

0 [0, t]
so that our works in this paper generalize those of [7] when n = 1. Furthermore
if n = 1, then most results of this paper can be reduced to those in [5], that is,
the works in this paper also extend the results in the same reference.

2. An analogue of the r-dimensional Wiener space

Throughout this paper let C, C+ and C
∼
+ denote the sets of the complex

numbers, the complex numbers with positive real parts and the nonzero com-
plex numbers with nonnegative real parts, respectively. Furthermore let mL
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denote the Lebesgue measure on the Borel class B(R) of R. The dot product
on the r-dimensional Euclidean space Rr is denoted by 〈·, ·〉Rr .

For a positive real t let C = C[0, t] be the space of all real-valued con-
tinuous functions on the closed interval [0, t] with the supremum norm. Let
(C[0, t],B(C[0, t]), wϕ) denote the analogue of Wiener space associated with
the probability measure ϕ [9, 11], where ϕ is a probability measure on B(R).
Let Cr = Cr[0, t] be the product space of C[0, t] with the product measure wr

ϕ.

Since C[0, t] is a separable Banach space, B(Cr[0, t]) =
∏r

j=1 B(C[0, t]). This

probability measure space (Cr[0, t],B(Cr[0, t]), wr
ϕ) is called an analogue of the

r-dimensional Wiener space. For v in L2[0, t] and x in C[0, t] let (v, x) denote
the Paley-Wiener-Zygmund integral of v according to x [9] and let 〈·, ·〉2 denote
the inner product over L2[0, t].

Lemma 2.1 ([9, Lemma 2.1]). If f : Rn+1 → C is a Borel measurable function,

then∫

C

f(x(t0), x(t1), . . . , x(tn))dwϕ(x)

∗
=

∫

R

∫

Rn

f(u0, u1, . . . , un)W1(1,~tn, (u0, u1, . . . , un))dm
n
L(u1, . . . , un)dϕ(u0),

where

Wr(λ,~tn, (u0, u1, . . . , un))(2)

=

[ n∏

j=1

λ

2π(tj − tj−1)

] r
2

exp

{
−
λ

2

n∑

j=1

‖uj − uj−1‖
2
Rr

tj − tj−1

}

for r ∈ N, λ ∈ C∼
+, ~tn = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn ≤ t,

(u0, u1, . . . , un) ∈ R(n+1)r, and
∗
= means that if either side exists, then both

sides exist and they are equal.

Now we introduce a useful lemma which plays a key role in the proof of
Theorem 3.2. The proof of it is similar to the proof of Lemma 3.4 in [5].

Lemma 2.2. For ~tn = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn ≤ t, λ > 0
and ξ ∈ Rr, let Xλ,ξ

n : Cr[0, t] → R(n+1)r be the function given by

Xλ,ξ
n (x) = (λ−

1

2x(t0) + ξ, λ−
1

2 x(t1) + ξ, . . . , λ−
1

2 x(tn) + ξ).

Furthermore let P
X

λ,ξ
n

be the probability distribution of Xλ,ξ
n on the Borel class

B(R(n+1)r) of R(n+1)r and suppose that ϕr is absolutely continuous with respect

to the Lebesgue measure mr
L. Then P

X
λ,ξ
n

≪ m
(n+1)r
L and

dP
X

λ,ξ
n

dm
(n+1)r
L

(ξ0, ξ1, . . . , ξn) = λ
r
2Wr(λ,~tn, (ξ0, ξ1, . . . , ξn))

dϕr

dmr
L

(λ
1

2 (ξ0 − ξ))

for m
(n+1)r
L -a.e. (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r, where Wr is given by (2).



906 DONG HYUN CHO

3. A simple formula for conditional wr
ϕ-integrals and the

operator-valued function space integrals

In this section we introduce a simple formula for an analogue of the condi-
tional Wiener integrals over Cr[0, t] with a vector-valued conditioning function.

Let F : Cr[0, t] → C be integrable and let X be a random vector on Cr[0, t]
assuming that the value space of X is a normed space with the Borel σ-algebra.
Then we have the conditional expectation E[F |X ] of F given X from a well
known probability theory. Furthermore there exists a PX -integrable complex-
valued function ψ on the value space of X such that E[F |X ](x) = (ψ ◦X)(x)
for wr

ϕ-a.e. x ∈ Cr [0, t], where PX is the probability distribution of X . The
function ψ is called the conditional wr

ϕ-integral of F given X and it is also
denoted by E[F |X ].

Throughout this paper, let ~τn = (t0, t1, . . . , tn) be given with 0 = t0 < t1 <

· · · < tn = t. For any x in Cr[0, t] define the polygonal function [x] by

[x](s) =

n∑

j=1

χ(tj−1,tj ](s)

(
tj − s

tj − tj−1
x(tj−1) +

s− tj−1

tj − tj−1
x(tj)

)
(3)

+ χ{t0}(s)x(t0)

for s ∈ [0, t], where χ(tj−1,tj ] and χ{t0} denote the indicator functions. Similarly,

for ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r, define the polygonal function [~ξn] by (3),
where x(tj) is replaced by ξj for j = 0, 1, . . . , n.

In the following theorem we introduce a simple formula for the conditional
wr

ϕ-integrals on C
r[0, t] [4].

Theorem 3.1. Let F : Cr[0, t] → C be integrable and Xn : Cr[0, t] → R(n+1)r

be given by

Xn(x) = (x(t0), x(t1), . . . , x(tn)).(4)

Then for PXn
-a.e. ~ξn ∈ R(n+1)r,

E[F |Xn](~ξn) = E[F (x− [x] + [~ξn])],

where PXn
is the probability distribution of Xn on (R(n+1)r,B(R(n+1)r)) and

the expectation is taken over the variable x.

Let F : Cr[0, t] → C be a function. For notational convenience let

Xλ,ξ
n (x) = Xn(λ

− 1

2 x+ ξ)(5)

and

Fλ,ξ(x) = F (λ−
1

2x+ ξ)(6)

for λ > 0 and for ξ ∈ Rr. Suppose that Fλ,ξ is integrable over Cr[0, t]. Then,
by Theorem 3.1,

E[Fλ,ξ|Xλ,ξ
n ](~ξn) = E[F (λ−

1

2 (x− [x]) + [~ξn])](7)
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for P
X

λ,ξ
n

-a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r, where P
X

λ,ξ
n

is the probability

distribution of Xλ,ξ
n on (R(n+1)r,B(R(n+1)r)). Let

(Kλ(F ))(~ξn) = E[F (λ−
1

2 (x− [x]) + [~ξn])].(8)

If (Kλ(F ))(~ξn) has the analytic extension J∗
λ(F )(

~ξn) on C+ as a function of
λ, then it is called the conditional analytic Wiener wr

ϕ-integral of F given Xn

with parameter λ and denoted by

Eanwλ [F |Xn](~ξn) = J∗
λ(F )(

~ξn)

for ~ξn ∈ R(n+1)r. Moreover, if for a nonzero real q, Eanwλ [F |Xn](~ξn) has the
limit as λ approaches to −iq through C+, then it is called the conditional
analytic Feynman wr

ϕ-integral of F given Xn with parameter q and denoted by

Eanfq [F |Xn](~ξn) = lim
λ→−iq

Eanwλ [F |Xn](~ξn).

Let F : Cr [0, t] → C be a measurable function. For any λ > 0, ψ in L1(R
r)

and ξ in Rr, let ψλ,ξ
t (x) = ψ(λ−

1

2 x(t) + ξ) and

(Iλ(F )ψ)(ξ) =

∫

Cr

Fλ,ξ(x)ψλ,ξ
t (x)dwr

ϕ(x),

where Fλ,ξ(x) is given by (6). If Iλ(F )ψ is in L∞(Rr) as a function of ξ and if
the correspondence ψ → Iλ(F )ψ gives an element of L ≡ L(L1(R

r), L∞(Rr)),
we say that the operator-valued function space integral Iλ(F ) exists. Next
suppose that there exists an L-valued function which is weakly analytic in
C+ and agrees with Iλ(F ) on (0,∞). Then this L-valued function is denoted
by Ianλ (F ) and is called the analytic operator-valued Wiener wr

ϕ-integral of
F associated with parameter λ. Finally, for a nonzero real q, suppose that
there exists an operator Jan

q (F ) in L such that for every ψ in L1(R
r), Ianλ (F )ψ

converges weakly to Jan
q (F )ψ as λ approaches to −iq throughC+. Then J

an
q (F )

is called the analytic operator-valued Feynman wr
ϕ-integral of F with parameter

q. We can take ψ to be Borel measurable [8], and the weak limit and the weak
analyticity are based on the weak∗ topology on L∞(Rr) induced by its pre-dual
L1(R

r) [2, 10].

Theorem 3.2. Let the assumptions and notations be as given in Lemma 2.2

and Xn be given by (4). For F : Cr[0, t] → C suppose that Eanwλ [F |Xn](~ξn)

exists for λ ∈ C+ and m
(n+1)r
L -a.e. ~ξn ∈ R(n+1)r, and that for each bounded

subset Ω of C+, there exists MΩ ≥ 0 such that

|Eanwλ [F |Xn](~ξn)| ≤MΩ(9)

for all λ ∈ Ω and m
(n+1)r
L -a.e. ~ξn ∈ R(n+1)r. Furthermore suppose that there

exists a function Ψ on C+ × Rr satisfying the following conditions:

(i) for each λ > 0, Ψ(λ, η) = dϕr

dmr
L

(λ
1

2 η) for mr
L-a.e. η ∈ Rr,

(ii) for mr
L-a.e. η ∈ Rr, Ψ(λ, η) is analytic on C+ as a function of λ, and
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(iii) for each bounded subset Ω of C+, Ψ(λ, η) is bounded for all λ ∈ Ω and

for mr
L-a.e. η ∈ Rr.

Then for λ ∈ C+, the analytic operator-valued Wiener wr
ϕ-integral I

an
λ (F )

exists as an element of L and is given by

(Ianλ (F )ψ)(ξ)(10)

= λ
r
2

∫

R(n+1)r

Eanwλ [F |Xn](ξ0, ξ1, . . . , ξn)ψ(ξn)Ψ(λ, ξ0 − ξ)

×Wr(λ, ~τn, (ξ0, ξ1, . . . , ξn))dm
r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn)

for ψ ∈ L1(R
r) and mr

L-a.e. ξ ∈ Rr, where Wr is given by (2). In addition,

suppose that n = 1 and for a nonzero real q, Eanfq [F |X1](ξ0, ξ1) exists for

m2r
L -a.e. (ξ0, ξ1) ∈ R2r. Moreover suppose that Ψ can be extended to (C+ ∪

{−iq})× Rr with the following two additional conditions:

(ii)′ for mr
L-a.e. η ∈ R

r, Ψ(λ, η) is continuous at λ = −iq as a function of

λ, and

(iii)′ there exists a (Borel measurable) function Φq ∈ L1(R
r) satisfying

|Ψ(λ, η)| ≤ |Φq(η)| for all λ ∈ Ωǫ and mr
L-a.e. η ∈ R

r,

where Ωǫ = {λ ∈ C+ : |λ+ iq| < ǫ} for some ǫ > 0.

Then the analytic operator-valued Feynman wr
ϕ-integral J

an
q (F ) exists as an

element of L and it is given by

(Jan
q (F )ψ)(ξ) = (−iq)

r
2

∫

Rr

∫

Rr

Eanfq [F |X1](ξ0, ξ1)ψ(ξ1)(11)

×Ψ(−iq, ξ0 − ξ)Wr(−iq, ~τ1, (ξ0, ξ1))dm
r
L(ξ0)dm

r
L(ξ1).

Proof. For λ > 0, ψ ∈ L1(R
r) and ξ ∈ R

r

(Iλ(F )ψ)(ξ) =

∫

Cr

E[Fλ,ξψ
λ,ξ
t |Xλ,ξ

n ](Xλ,ξ
n (x))dwr

ϕ(x)

=

∫

R(n+1)r

E[Fλ,ξψ
λ,ξ
t |Xλ,ξ

n ](~ξn)dPX
λ,ξ
n

(~ξn),

where Xλ,ξ
n is given by (5) and P

X
λ,ξ
n

is the probability distribution of Xλ,ξ
n on

the Borel class of R(n+1)r. For ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r

E[Fλ,ξψ
λ,ξ
t |Xλ,ξ

n ](~ξn) = E[F (λ−
1

2 (x− [x]) + [~ξn])ψ(λ
− 1

2 (x − [x])(t) + [~ξn](t))]

= (Kλ(F ))(~ξn)ψ(ξn)

by (7), where Kλ(F ) is given by (8). By Lemma 2.2

(Iλ(F )ψ)(ξ) = λ
r
2

∫

R(n+1)r

(Kλ(F ))(ξ0, ξ1, . . . , ξn)ψ(ξn)Wr(λ, ~τn, (ξ0, ξ1,

. . . , ξn))
dϕr

dmr
L

(λ
1

2 (ξ0 − ξ))dmr
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn).
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Now suppose that Ψ satisfies (i), (ii) and (iii). By (i)

(Iλ(F )ψ)(ξ) = λ
r
2

∫

R(n+1)r

(Kλ(F ))(ξ0, ξ1, . . . , ξn)ψ(ξn)Ψ(λ, ξ0 − ξ)

×Wr(λ, ~τn, (ξ0, ξ1, . . . , ξn))dm
r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn).

Let Ωλ be a bounded subset of C+ containing λ. Then for mr
L-a.e. ξ ∈ Rr

|(Iλ(F )ψ)(ξ)| ≤ λ
r
2MΩλ

‖Ψ‖Ωλ,∞||ψ‖L1(Rr),

where ‖Ψ‖Ωλ,∞ denotes the essential supremum of Ψ on Ωλ × Rr, so that
Iλ(F )ψ ∈ L∞(Rr) and Iλ(F ) ∈ L(L1(R

r), L∞(Rr)). For ψ ∈ L1(R
r) let

(Qλ(F )ψ)(ξ) be the right hand side of (10) for (λ, ξ) ∈ C+ × Rr and let Ω be
any bounded subset of C+. By the same method

(12) |(Qλ(F )ψ)(ξ)| ≤ |λ|
r
2MΩ‖Ψ‖Ω,∞‖ψ‖L1(Rr)

(
|λ|

Reλ

)nr
2

for all λ ∈ Ω and mr
L-a.e. ξ ∈ Rr so that Qλ(F )ψ ∈ L∞(Rr) and Qλ(F ) ∈

L(L1(R
r), L∞(Rr)) for λ ∈ C+. Using the same method as used in the proof

of Theorem 3.5 in [5] we can prove that Ianλ (F ) exists and Ianλ (F ) = Qλ(F )
for λ ∈ C+. The remainder part of the theorem follows from Theorem 3.5 in
[5]. �

Letting Ψ(λ, η) = ( 1
2πα2 )

r
2 exp{− λ

2α2 ‖η‖
2
Rr} for α > 0, λ ∈ C+ and η ∈ Rr,

we have the following corollary from Theorem 3.2.

Corollary 3.3. Let Xn be given by (4). Moreover let ϕr be normally dis-

tributed with the mean vector ~0 ∈ Rr and the nontrivial variance-covariance

matrix α2Ir, where α > 0 and Ir is the r-dimensional identity matrix. For

F : Cr[0, t] → C suppose that Eanwλ [F |Xn](~ξn) satisfies (9) in Theorem 3.2.

Then for λ ∈ C+, the analytic operator-valued Wiener wr
ϕ-integral I

an
λ (F ) ex-

ists as an element of L and is given by

(Ianλ (F )ψ)(ξ)(13)

=

(
λ

2πα2

) r
2
∫

R(n+1)r

Eanwλ [F |Xn](ξ0, ξ1, . . . , ξn)ψ(ξn)Wr(λ, ~τn,

(ξ0, ξ1, . . . , ξn)) exp

{
−
λ‖ξ0 − ξ‖2

Rr

2α2

}
dmr

L(ξ0)dm
r
L(ξ1) · · · dm

r
L(ξn)

for ψ ∈ L1(R
r) and mr

L-a.e. ξ ∈ Rr, where Wr is given by (2).

Theorem 3.4. If the conditions (iii) and (iii)′ in Theorem 3.2 are replaced by

the condition: for each bounded subset Ω of C+, there exists a (Borel measurable)
function ΦΩ ∈ L1(R

r) satisfying

|Ψ(λ, η)| ≤ |ΦΩ(η)| for all λ ∈ Ω and mr
L-a.e. η ∈ R

r,(14)

then the conclusions of Theorem 3.2 hold true.
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Proof. Suppose that ϕr is absolutely continuous and Ψ satisfies (i) and (ii) of
Theorem 3.2. By the same method as used in the proof of Theorem 3.2

(Iλ(F )ψ)(ξ) = λ
r
2

∫

R(n+1)r

(Kλ(F ))(ξ0, ξ1, . . . , ξn)ψ(ξn)Ψ(λ, ξ0 − ξ)

×Wr(λ, ~τn, (ξ0, ξ1, . . . , ξn))dm
r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn)

for λ > 0, ψ ∈ L1(R
r) and ξ ∈ Rr, where Kλ(F ) is given by (8). Let Ωλ be a

bounded subset of C+ containing λ. Then for mr
L-a.e. ξ ∈ Rr

|(Iλ(F )ψ)(ξ)| ≤ λ
r
2MΩλ

∫

R(n+1)r

|ψ(ξn)| |ΦΩλ
(ξ0 − ξ)|Wr(λ, ~τn,

(ξ0, ξ1, . . . , ξn))dm
r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn)

by (14), where Ω is replaced by Ωλ. For j = 1, . . . , n− 1, a simple calculation
shows that

[
λ

2π
√
(tj+1 − tj)(tj − tj−1)

]r ∫

Rr

exp

{
−
λ

2

(
‖ξj+1 − ξj‖

2
Rr

tj+1 − tj

+
‖ξj − ξj−1‖

2
Rr

tj − tj−1

)}
dmr

L(ξj)

=

[
λ

2π(tj+1 − tj−1)

] r
2

exp

{
−
λ‖ξj+1 − ξj−1‖

2
Rr

2(tj+1 − tj−1)

}
.

Hence

|(Iλ(F )ψ)(ξ)| ≤ λ
r
2MΩλ

(
λ

2πt

) r
2
∫

R2r

|ψ(ξn)| |ΦΩλ
(ξ0 − ξ)|

× exp

{
−
λ‖ξn − ξ0‖

2
Rr

2t

}
dm2r

L (ξ0, ξn)

≤ MΩλ
‖ΦΩλ

‖L1(Rr)‖ψ‖L1(Rr)

(
λ

√
2πt

)r

,

so that Iλ(F )ψ ∈ L∞(Rr) and Iλ(F ) ∈ L(L1(R
r), L∞(Rr)). For ψ ∈ L1(R

r)
let (Qλ(F )ψ)(ξ) be the right hand side of (10) for (λ, ξ) ∈ C+ ×Rr. Using the
same method as used in the proof of Theorem 3.2, we can prove the existence
of Ianλ (F ) and the equality Ianλ (F ) = Qλ(F ) for λ ∈ C+ if (12) is replaced by
the following inequality

|(Qλ(F )ψ)(ξ)| ≤MΩ|λ|
(n+1)r

2 (Reλ)−
(n−1)r

2 ‖ΦΩ‖L1(Rr)‖ψ‖L1(Rr)

(
1

2πt

) r
2

which is easily obtained for λ ∈ Ω and mr
L-a.e. ξ ∈ Rr, where Ω is arbi-

trary bounded subset of C+. The remainder part of the theorem follows from
Theorems 3.5 and 3.7 in [5]. �

Theorem 3.5. Let n ≥ 2, the assumptions be as given in Lemma 2.2 and Xn

be given by (4). For F : Cr[0, t] → C suppose that Eanwλ [F |Xn](~ξn) exists for
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λ ∈ C+ and m
(n+1)r
L -a.e. ~ξn ∈ R(n+1)r, and that for each bounded subset Ω of

C+, there exists a (Borel measurable) function ΨΩ ∈ L1(R
nr) such that

(15) |Eanwλ [F |Xn](ξ0, ξ1, . . . , ξn−1, ξn)| ≤ |ΨΩ(ξ0, ξ1, . . . , ξn−1)|

for all λ ∈ Ω and m
(n+1)r
L -a.e. (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r. Furthermore suppose

that there exists a function Ψ on C+ × Rr satisfying conditions (i), (ii), (iii)
of Theorem 3.2. Then for λ ∈ C+, the analytic operator-valued Wiener wr

ϕ-

integral Ianλ (F ) exists as an element of L and is given by (10). In addition,

suppose that for a nonzero real q, Eanfq [F |Xn](~ξn) exists for m
(n+1)r
L -a.e. ~ξn ∈

R(n+1)r. Moreover suppose that Ψ can be extended to (C+ ∪ {−iq})× Rr with

the condition (ii)′ of Theorem 3.2. Then the analytic operator-valued Feynman

wr
ϕ-integral J

an
q (F ) exists as an element of L and it is given by (10) replacing

λ and Eanwλ by −iq and Eanfq , respectively.

Proof. Suppose that ϕr is absolutely continuous and Ψ satisfies (i), (ii) and
(iii) of Theorem 3.2. By the same method as used in the proof of Theorem 3.2

(Iλ(F )ψ)(ξ) = λ
r
2

∫

R(n+1)r

(Kλ(F ))(ξ0, ξ1, . . . , ξn−1, ξn)ψ(ξn)Ψ(λ, ξ0 − ξ)

×Wr(λ, ~τ , (ξ0, ξ1, . . . , ξn))dm
r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn)

for λ > 0, ψ ∈ L1(R
r) and ξ ∈ Rr, where Kλ(F ) is given by (8). Let Ωλ be a

bounded subset of C+ containing λ. Then for mr
L-a.e. ξ ∈ Rr

|(Iλ(F )ψ)(ξ)| ≤ λ
r
2 ‖Ψ‖Ωλ,∞

[ n∏

j=1

λ

2π(tj − tj−1)

] r
2
∫

R(n+1)r

|ψ(ξn)|

× |ΨΩλ
(ξ0, ξ1, . . . , ξn−1)|dm

r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn)

= λ
r
2 ‖Ψ‖Ωλ,∞‖ΨΩλ

‖L1(Rnr)‖ψ‖L1(Rr)

[ n∏

j=1

λ

2π(tj − tj−1)

] r
2

,

where ‖Ψ‖Ωλ,∞ denotes the essential supremum of Ψ on Ωλ × Rr so that
Iλ(F )ψ ∈ L∞(Rr) and Iλ(F ) ∈ L(L1(R

r), L∞(Rr)). For ψ ∈ L1(R
r) let

(Qλ(F )ψ)(ξ) be the right hand side of (10) for (λ, ξ) ∈ C+ × Rr. Using the
same method as used in the proof of Theorem 3.2, we can prove the existence
of Ianλ (F ) and the equality Ianλ (F ) = Qλ(F ) for λ ∈ C+ if (12) is replaced by
the following inequality

|(Qλ(F )ψ)(ξ)| ≤ |λ|
r
2 ‖Ψ‖Ω,∞‖ΨΩ‖L1(Rnr)‖ψ‖L1(Rr)

[ n∏

j=1

|λ|

2π(tj − tj−1)

] r
2

which is easily obtained for λ ∈ Ω and mr
L-a.e. ξ ∈ Rr, where Ω is arbitrary

bounded subset of C+. Furthermore suppose that Ψ satisfies (ii)′ of Theorem
3.2. For ψ ∈ L1(R

r) let (Jan
q (F )ψ)(ξ) be the right hand side of (10) for

ξ ∈ Rr where λ and Eanwλ are replaced by −iq and Eanfq , respectively, and
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let Ωǫ = {λ ∈ C+ : |λ+ iq| < ǫ} for some ǫ > 0. Then, by (ii)′ of Theorem 3.2,

|(Jan
q (F )ψ)(ξ)|

≤ |q|
r
2 ‖Ψ‖Ωǫ,∞‖ΨΩǫ

‖L1(Rnr)‖ψ‖L1(Rr)

[ n∏

j=1

|q|

2π(tj − tj−1)

] r
2

≤ (|q|+ ǫ)
r
2 ‖Ψ‖Ωǫ,∞‖ΨΩǫ

‖L1(Rnr)‖ψ‖L1(Rr)

[ n∏

j=1

|q|+ ǫ

2π(tj − tj−1)

] r
2

which implies Jan
q (F )ψ ∈ L∞(Rr) and Jan

q (F ) ∈ L(L1(R
r), L∞(Rr)). The

remainder part of the theorem follows from Theorem 3.5 in [5]. �

By Theorem 3.5 we can obtain the following corollary.

Corollary 3.6. Let n ≥ 2, Xn be given by (4) and ϕr be the measure as given

in Corollary 3.3. Suppose that F : Cr[0, t] → C satisfies the conditions in

Theorem 3.5. Then for nonzero real q, the analytic operator-valued Feynman

wr
ϕ-integral J

an
q (F ) exists as an element of L and it is given by the right hand

side of (13) replacing λ and Eanwλ by −iq and Eanfq , respectively.

Using the same method as used in the proof of Theorem 3.5, we can prove
the following theorem.

Theorem 3.7. If the conditions (iii) and (15) in Theorems 3.2 and 3.5, re-

spectively, are replaced by (14) in Theorem 3.4 and the following condition:

for each bounded subset Ω of C+, there exists a (Borel measurable) function

ΨΩ ∈ L1(R
(n−1)r) such that

|Eanwλ [F |Xn](ξ0, ξ1, . . . , ξn−1, ξn)| ≤ |ΨΩ(ξ1, . . . , ξn−1)|

for all λ ∈ Ω and m
(n+1)r
L -a.e. (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r, respectively, then the

statement of Theorem 3.5 holds true.

Theorem 3.8. Let n ≥ 2, the assumptions be as given in Lemma 2.2 and Xn

be given by (4). For F : Cr[0, t] → C suppose that Eanwλ [F |Xn](~ξn) satisfies

(9) in Theorem 3.2. Let

B(x) = f(x(t0), . . . , x(tn−1))F (x)

for wr
ϕ-a.e. x ∈ Cr[0, t], where f ∈ L1(R

nr). Furthermore suppose that there

exists a function Ψ on C+×Rr satisfying conditions (i), (ii) and (iii) of Theorem
3.2. Then for λ ∈ C+, the analytic operator-valued Wiener wr

ϕ-integral I
an
λ (B)

exists as an element of L and is given by

(Ianλ (B)ψ)(ξ)(16)

= λ
r
2

∫

R(n+1)r

f(ξ0, ξ1, . . . , ξn−1)E
anwλ [F |Xn](ξ0, ξ1, . . . , ξn−1, ξn)ψ(ξn)

×Ψ(λ, ξ0 − ξ)Wr(λ, ~τ , (ξ0, ξ1, . . . , ξn))dm
r
L(ξ0)dm

r
L(ξ1) · · · dm

r
L(ξn)
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for ψ ∈ L1(R
r) and mr

L-a.e. ξ ∈ Rr. In addition, suppose that for a nonzero

real q, Eanfq [F |Xn](~ξn) exists for m
(n+1)r
L -a.e. ~ξn ∈ R

(n+1)r. Moreover sup-

pose that Ψ can be extended to (C+ ∪ {−iq}) × Rr with the condition (ii)′ of
Theorem 3.2. Then the analytic operator-valued Feynman wr

ϕ-integral J
an
q (B)

exists as an element of L and it is given by the right hand side of (16), where
λ and Eanwλ are replaced by −iq and Eanfq , respectively.

Proof. For λ > 0 and ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r

(Kλ(B))(~ξn) =

∫

Cr

f(λ−
1

2 (x− [x])(t0) + [~ξn](t0), . . . , λ
− 1

2 (x − [x])(tn−1)

+ [~ξn](tn−1))F (λ
− 1

2 (x− [x]) + [~ξn])dw
r
ϕ(x)

= f(ξ0, . . . , ξn−1)

∫

Cr

F (λ−
1

2 (x− [x]) + [~ξn])dw
r
ϕ(x)

= f(ξ0, . . . , ξn−1)(Kλ(F ))(~ξn),

where Kλ is given by (8). Since f(ξ0, . . . , ξn−1) is independent of λ ∈ C+, the

existence of Eanwλ [B|Xn](~ξn) follows from the existence of Eanwλ [F |Xn](~ξn)
and

Eanwλ [B|Xn](~ξn) = f(ξ0, ξ1, . . . , ξn−1)E
anwλ [F |Xn](~ξn).

Furthermore, for any bounded subset Ω of C+,

|Eanwλ [B|Xn](~ξn)| = |f(ξ0, ξ1, . . . , ξn−1)| |E
anwλ [F |Xn](~ξn)|

≤MΩ|f(ξ0, ξ1, . . . , ξn−1)|

for all λ ∈ Ω and m
(n+1)r
L -a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R(n+1)r. The theorem

now follows from Theorem 3.5. �

By Corollary 3.3 and Theorem 3.8, we have the following corollary.

Corollary 3.9. Let n ≥ 2 and Xn be given by (4). Moreover let ϕr be the

measure as given in Corollary 3.3. Suppose that B is as given in Theorem

3.8. Then for nonzero real q, the analytic operator-valued Feynman wr
ϕ-integral

Jan
q (B) exists as an element of L and it is given by

(Jan
q (B)ψ)(ξ)

(17)

=

(
q

2πiα2

) r
2
∫

R(n+1)r

f(ξ0, ξ1, . . . , ξn−1)E
anfq [F |Xn](ξ0, ξ1, . . . , ξn−1, ξn)

× ψ(ξn)Wr(−iq, ~τn(ξ0, ξ1, . . . , ξn)) exp

{
qi

2

‖ξ0 − ξ‖2
Rr

α2

}
dmr

L(ξ0)dm
r
L(ξ1)

· · · dmr
L(ξn)

for ψ ∈ L1(R
r) and mr

L-a.e. ξ ∈ Rr, where Wr is given by (2).
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By the same method as used in the proof of Theorem 3.8, we obtain the
following theorem from Theorem 3.7.

Theorem 3.10. Let n ≥ 2, the assumptions be as given in Lemma 2.2 and Xn

be given by (4). For F : Cr[0, t] → C suppose that Eanwλ [F |Xn](~ξn) satisfies

(9) in Theorem 3.2. Let

D(x) = f(x(t1), . . . , x(tn−1))F (x)

for wr
ϕ-a.e. x ∈ Cr[0, t], where f ∈ L1(R

(n−1)r). Furthermore suppose that

there exists a function Ψ on C+ ×Rr satisfying conditions (i), (ii) of Theorem
3.2 and (14) of Theorem 3.4. Then for λ ∈ C+, the analytic operator-valued

Wiener wr
ϕ-integral I

an
λ (D) exists as an element of L and is given by (16),

where f(ξ0, ξ1, . . . , ξn−1) is replaced by f(ξ1, . . . , ξn−1). In addition, suppose

that for a nonzero real q, Eanfq [F |Xn](~ξn) exists for m
(n+1)r
L -a.e. ~ξn ∈ R(n+1)r.

Moreover suppose that Ψ can be extended to (C+∪{−iq})×Rr with the condition

(ii)′ of Theorem 3.2. Then the analytic operator-valued Feynman wr
ϕ-integral

Jan
q (D) exists as an element of L and it is given by the right hand side of

(16) where λ, Eanwλ and f(ξ0, ξ1, . . . , ξn−1) are replaced by −iq, Eanfq and

f(ξ1, . . . , ξn−1), respectively.

Remark 3.11. The function Ψ satisfying the conditions in Theorems 3.2, 3.4,
3.5, 3.7, 3.8 and 3.10 exists [5]. We note that such a function which is not a
normal density can be obtained.

4. The conditional wϕ-integrals of bounded functions and the

operator-valued function space integrals

Throughout this section, we assume that r = 1. Let M = M(L2[0, t]) be
the class of all C-valued Borel measures of bounded variation over L2[0, t] and
let Swϕ

be the space of all functions F of the form; for σ ∈ M

(18) F (x) =

∫

L2[0,t]

exp{i(v, x)}dσ(v)

for wϕ-a.e. x ∈ C[0, t]. Using the same method in [3], it can be shown that

Swϕ
is a Banach algebra. Let M̂(Rγ) be the set of all functions φ on Rγ defined

by

(19) φ(u) =

∫

Rγ

exp{i〈z, u〉Rγ}dρ(z),

for u ∈ Rγ , where ρ is a complex Borel measure of bounded variation over Rγ .
For each j = 1, . . . , n, let αj(s) = 1√

tj−tj−1

χ(tj−1,tj ](s) where 0 ≤ s ≤ t.

Let V be the subspace of L2[0, t] generated by {α1, . . . , αn} and let V ⊥ denote
the orthogonal complement of V . Let P and P⊥ be the orthogonal projections
from L2[0, t] to V and V ⊥, respectively. Then for v ∈ L2[0, t]

v − Pv = P⊥v.
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Moreover it is not difficult to show that

(v, [x]) = (Pv, x)

for x ∈ C[0, t]. For v ∈ L2[0, t] and ~ξn = (ξ0, ξ1, . . . , ξn) ∈ Rn+1, we can show
that

(20) (v, [~ξn]) =

n∑

j=1

(Pv)(tj)(ξj − ξj−1).

Throughout this paper, let {v1, v2, . . . , vγ} be an orthonormal subset of
L2[0, t] such that {P⊥v1, . . . , P

⊥vγ} are independent. Let {e1, . . . , eγ} be the
orthonormal set obtained from {P⊥v1, . . . , P

⊥vγ} by the Gram-Schmidt or-
thonormalization process. Now, for l = 1, . . . , γ, let

(21) P⊥vl =

γ∑

j=1

αljej

be the linear combinations of the ejs and let

A =





α11 α12 · · · α1γ

α21 α22 · · · α2γ

...
...

. . .
...

αγ1 αγ2 · · · αγγ





be the coefficient matrix of the combinations. Let TA : Rγ → Rγ and TAT :
Rγ → Rγ be given by

(22) TA(z) = zA and TAT (z) = zAT

where z is arbitrary row-vector in Rγ and AT is the transpose of A. We note
that A is invertible so that TA and TAT are isomorphisms.

For convenience we introduce useful notations from the Gram-Schmidt or-
thonormalization process. For v ∈ L2[0, t], we obtain an orthonormal set {e1,
. . . , eγ , eγ+1} as follows; let

cj(v) =

{
〈v, ej〉2 for j = 1, . . . , γ√
‖v‖22 −

∑γ
l=1〈v, el〉

2
2 for j = γ + 1

(23)

and

eγ+1 =
1

cγ+1(v)

[
v −

γ∑

j=1

cj(v)ej

]

if cγ+1(v) 6= 0. Then

(24) v =

γ+1∑

j=1

cj(v)ej and ‖v‖22 =

γ+1∑

j=1

[cj(v)]
2.
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We note that the equalities in (24) hold trivially for the case cγ+1(v) = 0. For
v ∈ L2[0, t] let

(~v, x) = ((v1, x), . . . , (vγ , x)) for x ∈ C[0, t].

Theorem 4.1. Let Xn be given by (4) with r = 1 and G(x) = F (x)φ(~v, x)

for wϕ-a.e. x ∈ C[0, t], where F ∈ Swϕ
and φ ∈ M̂(Rγ) are given by (18) and

(19), respectively. For v ∈ L2[0, t] let cj(P
⊥v) be given by (23), where v is

replaced by P⊥v for j = 1, . . . , γ. Then for λ ∈ C+, E
anwλ [G|Xn](~ξn) exists

for mn+1
L -a.e. ~ξn ∈ Rn+1, and it is given by

Eanwλ [G|Xn](~ξn)(25)

=

∫

L2[0,t]

∫

Rγ

exp

{
i[(v, [~ξn]) + 〈z, (~v, [~ξn])〉Rγ ]−

1

2λ
[‖TA(z)‖

2
Rγ

+ 2〈~c(P⊥v), TA(z)〉Rγ + ‖P⊥v‖22]

}
dρ(z)dσ(v),

where ~c(P⊥v) = (c1(P
⊥v), . . . , cγ(P

⊥v)) and TA is given by (22). Further-

more, for nonzero real q, Eanfq [G|Xn](~ξn) exists and it is given by the right-

hand side of (25) where λ is replaced by −iq. In particular, if n = 1, then

Eanfq [G|X1](ξ0, ξ1) is given by

Eanfq [G|X1](ξ0, ξ1)(26)

=

∫

L2[0,t]

∫

Rγ

exp

{
i
ξ1 − ξ0

t

[∫ t

0

v(s)ds+

γ∑

j=1

zj

∫ t

0

vj(s)ds

]
+

1

2qi

[ γ∑

j=1

( γ∑

l=1

zlαlj

)2

+ 2

γ∑

j=1

(∫ t

0

v(s)ej(s)ds−
1

t

∫ t

0

v(s)ds

∫ t

0

ej(s)ds

)

×

( γ∑

l=1

zlαlj

)
+

∫ t

0

[v(s)]2ds−
1

t

[∫ t

0

v(s)ds

]2]}
dρ(z)dσ(v)

for m2
L-a.e. (ξ0, ξ1) ∈ R2, where z = (z1, . . . , zγ) and the αljs are as given in

(21).

Proof. The equation (25) and existence of Eanfq [G|Xn] follow from Theorem
2.6 in [6]. To prove the remainder part of the theorem, suppose that n = 1 and

let ~ξ1 = (ξ0, ξ1). Then for v ∈ L2[0, t]

(27) (v, [~ξ1]) =
ξ1 − ξ0

t

∫ t

0

v(s)ds.

Furthermore

P⊥v = v − Pv = v − 〈v, α1〉2α1 = v −

(
1

t

∫ t

0

v(s)ds

)
χ(0,t]
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so that for j = 1, . . . , γ,

(28) cj(P
⊥v) = 〈P⊥v, ej〉2 =

∫ t

0

v(s)ej(s)ds −
1

t

∫ t

0

v(s)ds

∫ t

0

ej(s)ds

and

(29) ‖P⊥v‖22 = ‖v‖22 − 〈v, α1〉
2
2‖α1‖

2
2 =

∫ t

0

[v(s)]2ds−
1

t

[∫ t

0

v(s)ds

]2
.

The equation (26) now follows and hence the proof is completed. �

Corollary 4.2. Let the assumptions and notations be as given in Theorem 4.1.

(1) If σ is concentrated on V , then for nonzero q and mn+1
L -a.e. ~ξn =

(ξ0, ξ1, . . . , ξn) ∈ Rn+1,

Eanfq [G|Xn](~ξn) =

∫

L2[0,t]

∫

Rγ

exp

{
i

[ n∑

j=1

v(tj)(ξj − ξj−1)

+ 〈z, (~v, [~ξn])〉Rγ

]
+

1

2qi
‖TA(z)‖

2
Rγ

}
dρ(z)dσ(v)

and

Eanfq [G|X1](ξ0, ξ1) =

∫

L2[0,t]

∫

Rγ

exp

{
i

[
v(t)(ξ1 − ξ0) +

ξ1 − ξ0

t

γ∑

j=1

zj

×

∫ t

0

vj(s)ds

]
+

1

2qi

γ∑

j=1

( γ∑

l=1

zlαlj

)2}
dρ(z)dσ(v).

(2) If σ is concentrated on V ⊥, then for nonzero real q,

Eanfq [G|Xn](~ξn) =

∫

L2[0,t]

∫

Rγ

exp

{
i〈z, (~v, [~ξn])〉Rγ +

1

2qi
[‖TA(z)‖

2
Rγ

+ 2〈~c(v), TA(z)〉Rγ + ‖v‖22]

}
dρ(z)dσ(v)

and

Eanfq [G|X1](ξ0, ξ1)

=

∫

L2[0,t]

∫

Rγ

exp

{
i
ξ1 − ξ0

t

γ∑

j=1

zj

∫ t

0

vj(s)ds +
1

2qi

[ γ∑

j=1

( γ∑

l=1

zlαlj

)2

+ 2

γ∑

j=1

(∫ t

0

v(s)ej(s)ds

)( γ∑

l=1

zlαlj

)
+

∫ t

0

[v(s)]2ds

]}
dρ(z)dσ(v).

(3) If vl ∈ V ⊥ for l = 1, . . . , γ, then for nonzero real q,

Eanfq [G|Xn](~ξn)
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=

∫

L2[0,t]

∫

Rγ

exp

{
i(v, [~ξn]) +

1

2qi
[‖z‖2

Rγ + 2〈~c(P⊥v), z〉Rγ + ‖P⊥v‖22]

}

dρ(z)dσ(v),

where ~c(P⊥v) = (〈P⊥v, v1〉2, . . . , 〈P
⊥v, vγ〉2), and

Eanfq [G|X1](ξ0, ξ1)

=

∫

L2[0,t]

∫

Rγ

exp

{
i
ξ1 − ξ0

t

∫ t

0

v(s)ds+
1

2qi

[ γ∑

j=1

z2j + 2

γ∑

j=1

zj

(∫ t

0

v(s)

× vj(s)ds−
1

t

∫ t

0

v(s)ds

∫ t

0

vj(s)ds

)
+

∫ t

0

[v(s)]2ds−
1

t

[∫ t

0

v(s)ds

]2]}

dρ(z)dσ(v).

Proof. (1) If σ is concentrated on V , then for σ-a.e. v ∈ L2[0, t], Pv = v and
P⊥v = 0 so that by (20)

(v, [~ξn]) =

n∑

j=1

(Pv)(tj)(ξj − ξj−1) =

n∑

j=1

v(tj)(ξj − ξj−1)

and for j = 1, . . . , γ

cj(P
⊥v) = 〈P⊥v, ej〉2 = 0.

The results now follow from Theorem 4.1.
(2) If σ is concentrated on V ⊥, then for σ-a.e. v ∈ L2[0, t], P

⊥v = v and

Pv = 0 so that (v, [~ξn]) = 0 by (20). The results now follow from Theorem 4.1.
(3) If vl ∈ V ⊥ for l = 1, . . . , γ, then Pvl = 0 so that by (20)

(~v, [~ξn]) = ((v1, [~ξn]), . . . , (vγ , [ξn])) = (0, . . . , 0)

which implies 〈z, (~v, [~ξn])〉Rγ = 0. Furthermore, P⊥vl = vl and el = vl which
implies that A is the identity matrix. By Theorem 4.1, the results follow. �

Remark 4.3. (1) We note that there exist orthonormal vectors v1, v2, . . . , vγ in
L2[0, t] such that P⊥v1,P

⊥v2, . . . ,P
⊥vγ are independent [6].

(2) If vl ∈ V for some l, then P⊥vl = 0 and hence P⊥v1, . . . ,P
⊥vγ are

dependent. In this case, the proof of Theorem 4.1 can be modified.
(3) Letting ρ = δ0 or σ = δ0, we can obtainEanfq [F |Xn] or E

anfq [φ(~v, ·)|Xn],
respectively [6, Theorems 2.1 and 2.4].

Since Eanwλ [G|Xn](~ξn) is bounded by ‖ρ‖‖σ‖, the next theorem follows
immediately from Theorems 3.2 and 4.1.

Theorem 4.4. Let r = 1, the assumptions be as given in Lemma 2.2, Xn

be given by (4) and G be as given in Theorem 4.1. Furthermore suppose that

there exists a function Ψ on C+ × R satisfying the conditions (i), (ii) and (iii)
in Theorem 3.2. Then for λ ∈ C+, the analytic operator-valued Wiener wϕ-

integral Ianλ (G) exists as an element of L and is given by (10) with r = 1,
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where Eanwλ [F |Xn] is replaced by Eanwλ [G|Xn] which is as given in (25). In

addition, suppose that n = 1 and Ψ can be extended to (C+ ∪ {−iq})× R with

the conditions (ii)′ and (iii)′ of Theorem 3.2. Then the analytic operator-valued

Feynman wϕ-integral J
an
q (G) exists as an element of L and it is given by (11)

with r = 1, where Eanfq [F |X1] is replaced by Eanfq [G|X1] which is as given in

(26).

Corollary 4.5. Let r = 1, Xn be given by (4) and G be as given in Theorem

4.1. Moreover let ϕ be normally distributed with mean 0 and variance α2. Then

for λ ∈ C+, the analytic operator-valued Wiener wϕ-integral I
an
λ (G) exists as

an element of L and is given by (13) with r = 1, where Eanwλ [F |Xn] is replaced
by Eanwλ [G|Xn] which is as given in (25).

Remark 4.6. Under the assumptions as given in Corollary 4.5, we can prove the
existence of the analytic operator-valued Feynman wϕ-integral J

an
q (G) through

direct calculations, but they are tedious.

By Theorems 3.4 and 4.1 we can easily obtain the following theorem.

Theorem 4.7. If, in Theorem 4.4, the conditions (iii) and (iii)′ of Theorem
3.2 are replaced by (14), then conclusions of Theorem 4.4 hold true.

By Theorems 3.8 and 4.1 we can also obtain the following theorem.

Theorem 4.8. Let r = 1, n ≥ 2, the assumptions be as given in Lemma 2.2,

Xn be given by (4) and G be as given in Theorem 4.1. Let

BG(x) = f(x(t0), . . . , x(tn−1))G(x)

for wϕ-a.e. x ∈ C[0, t], where f ∈ L1(R
n). Furthermore suppose that there

exists a function Ψ on C+ × R satisfying the conditions (i), (ii) and (iii) of

Theorem 3.2. Then for λ ∈ C+, the analytic operator-valued Wiener wϕ-

integral Ianλ (BG) exists as an element of L and is given by (16) with r = 1,
where Eanwλ [F |Xn] is replaced by Eanwλ [G|Xn] which is as given in (25). In

addition, suppose that for nonzero real q, Ψ can be extended to (C+ ∪{−iq})×
R with the condition (ii)′ of Theorem 3.2. Then the analytic operator-valued

Feynman wϕ-integral J
an
q (BG) exists as an element of L and it is given by the

right hand side of (16) with r = 1, where λ and Eanwλ [F |Xn] are replaced by

−iq and Eanfq [G|Xn], respectively.

Corollary 4.9. Let r = 1, n ≥ 2, Xn be given by (4) and BG be as given in

Theorem 4.8. Moreover let ϕ be normally distributed with mean 0 and variance

α2. Then for nonzero real q, the analytic operator-valued Feynman wϕ-integral

Jan
q (BG) exists as an element of L and it is given by the right hand side of (17)

with r = 1, where Eanfq [F |Xn] is replaced by Eanfq [G|Xn] which is as given

in Theorem 4.1.

The following theorem now follows from Theorems 3.10 and 4.1.
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Theorem 4.10. Let r = 1, n ≥ 2, the assumptions be as given in Lemma 2.2,

Xn be given by (4) and G be as given in Theorem 4.1. Let

DG(x) = f(x(t1), . . . , x(tn−1))G(x)

for wϕ-a.e. x ∈ C[0, t], where f ∈ L1(R
n−1). Furthermore suppose that there

exists a function Ψ on C+ × R satisfying the conditions (i), (ii) of Theorem

3.2 and (14) of Theorem 3.4. Then for λ ∈ C+, the analytic operator-valued

Wiener wϕ-integral I
an
λ (DG) exists as an element of L and is given by (16) with

r = 1, where Eanwλ [F |Xn] and f(ξ0, ξ1, . . . , ξn−1) are replaced by Eanwλ [G|Xn]
and f(ξ1, . . . , ξn−1), respectively. In addition, suppose that for a nonzero real

q, Ψ can be extended to (C+ ∪ {−iq})× R with the condition (ii)′ of Theorem
3.2. Then the analytic operator-valued Feynman wϕ-integral J

an
q (DG) exists

as an element of L and it is given by the expression of Ianλ (DG), where λ is

replaced by −iq.

5. The conditional wϕ-integrals of cylinder functions and the

operator-valued function space integrals

In this section, we investigate the conditional analytic Wiener and Feynman
wϕ-integrals of cylinder functions and prove that the operator-valued function
space integrals of those functions can be expressed by the conditional wϕ-
integrals.

We now have the following theorem from (22), (27), (28), (29) and Theorem
3.3 of [6].

Theorem 5.1. Let Xn be given by (4) with r = 1 and H(x) = F (x)f(~v, x),
where f ∈ Lp(R

γ)(1 ≤ p ≤ ∞) and F is given by (18). For v ∈ L2[0, t] let
cj(P

⊥v) be given by (23), where v is replaced by P⊥v for j = 1, . . . , γ. Then

for λ ∈ C+, E
anwλ [H |Xn](~ξn) exists for ~ξn ∈ R

n+1, and it is given by

Eanwλ [H |Xn](~ξn)(30)

=

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f((~v, [~ξn]) + TAT (z)) exp

{
i(v, [~ξn])

+
1

2λ

[ γ∑

j=1

[λizj + cj(P
⊥v)]2 − ‖P⊥v‖22

]}
dm

γ
L(z)dσ(v),

where z = (z1, . . . , zγ) and TAT is given by (22). In particular, if p = 1,

then for nonzero real q, Eanfq [H |Xn](~ξn) exists and it is given by the right

hand side of (30) where λ is replaced by −iq. Furthermore, if n = 1, then

Eanwλ [H |X1](ξ0, ξ1) is given by

Eanwλ [H |X1](ξ0, ξ1)

(31)
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=

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f

(
ξ1 − ξ0

t

(∫ t

0

v1(s)ds, . . . ,

∫ t

0

vγ(s)ds

)
+

( γ∑

j=1

α1jzj , . . . ,

γ∑

j=1

αγjzj

))
exp

{
i
ξ1 − ξ0

t

∫ t

0

v(s)ds +
1

2λ

[ γ∑

j=1

[
λizj +

∫ t

0

v(s)ej(s)ds −
1

t

∫ t

0

v(s)ds

∫ t

0

ej(s)ds

]2
−

∫ t

0

[v(s)]2ds+
1

t

[∫ t

0

v(s)ds

]2

]}
dm

γ
L(z)dσ(v)

for (ξ0, ξ1) ∈ R2, where the αljs are as given in (21).

Using the same method as used in the proof of Corollary 4.2, we can prove
the following corollary.

Corollary 5.2. Let the assumptions and notations be as given in Theorem 5.1.

(1) If σ is concentrated on V , then for λ ∈ C+ and ~ξn = (ξ0, ξ1, . . . , ξn) ∈
Rn+1

Eanwλ [H |Xn](~ξn) =

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f((~v, [~ξn]) + TAT (z)) exp

{
i

×
n∑

j=1

v(tj)(ξj − ξj−1)−
λ

2
‖z‖2

Rγ

}
dm

γ
L(z)dσ(v)

and, for n = 1 and for (ξ0, ξ1) ∈ R2

Eanwλ [H |X1](ξ0, ξ1)

=

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f

(
ξ1 − ξ0

t

(∫ t

0

v1(s)ds, . . . ,

∫ t

0

vγ(s)ds

)

+

( γ∑

j=1

α1jzj , . . . ,

γ∑

j=1

αγjzj

))
exp

{
iv(t)(ξ1 − ξ0)−

λ

2
‖z‖2Rγ

}

dm
γ
L(z)dσ(v)

where z = (z1, . . . , zγ).

(2) If σ is concentrated on V ⊥, then for λ ∈ C+ and for ~ξn ∈ Rn+1,

Eanwλ [H |Xn](~ξn) =

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f((~v, [~ξn]) + TAT (z)) exp

{

1

2λ

[ γ∑

j=1

[λizj + cj(v)]
2 − ‖v‖22

]}
dm

γ
L(z)dσ(v)

where z = (z1, . . . , zγ), and for n = 1 and for (ξ0, ξ1) ∈ R2,

Eanwλ [H |X1](ξ0, ξ1)
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=

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f

(
ξ1 − ξ0

t

(∫ t

0

v1(s)ds, . . . ,

∫ t

0

vγ(s)ds

)

+

( γ∑

j=1

α1jzj , . . . ,

γ∑

j=1

αγjzj

))
exp

{
1

2λ

γ∑

j=1

[
λizj +

∫ t

0

v(s)

× ej(s)ds

]2
−

∫ t

0

[v(s)]2ds

]}
dm

γ
L(z1, . . . , zγ)dσ(v).

(3) If vl ∈ V ⊥ for l = 1, . . . , γ, then for λ ∈ C+ and for ~ξn ∈ Rn+1,

Eanwλ [H |Xn](~ξn)

=

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f(z1, . . . , zγ) exp

{
i(v, [~ξn]) +

1

2λ

[ γ∑

j=1

[λizj

+ cj(P
⊥v)]2 − ‖P⊥v‖22

]}
dm

γ
L(z1, . . . , zγ)dσ(v)

and for n = 1 and for (ξ0, ξ1) ∈ R
2,

Eanwλ [H |X1](ξ0, ξ1)

=

(
λ

2π

) γ
2
∫

L2[0,t]

∫

Rγ

f(z1, . . . , zγ) exp

{
i
ξ1 − ξ0

t

∫ t

0

v(s)ds

+
1

2λ

[ γ∑

j=1

[
λizj +

∫ t

0

v(s)vj(s)ds−
1

t

∫ t

0

v(s)ds

∫ t

0

vj(s)ds

]2

−

∫ t

0

[v(s)]2ds+
1

t

[∫ t

0

v(s)ds

]2]}
dm

γ
L(z1, . . . , zγ)dσ(v).

Letting σ = δ0 which is the Dirac measure concentrated at 0 ∈ L2[0, t], we
obtain the following corollary.

Corollary 5.3. Let Xn be given by (4) with r = 1 and H(x) = f(~v, x) where

f ∈ Lp(R
γ)(1 ≤ p ≤ ∞). Then for λ ∈ C+, E

anwλ [H |Xn](~ξn) exists for
~ξn ∈ Rn+1 and it is given by

Eanwλ [H |Xn](~ξn)(32)

=

(
λ

2π

) γ
2
∫

Rγ

f((~v, [~ξn]) + TAT (z)) exp

{
−
λ

2
‖z‖2

Rγ

}
dm

γ
L(z),

where TAT is given by (22). In particular, if p = 1, then for nonzero real q,

Eanfq [H |Xn](~ξn) exists and it is given by the right hand side of (32) where λ

is replaced by −iq. Furthermore, if n = 1, then Eanwλ [H |X1](ξ0, ξ1) is given

by

Eanwλ [H |X1](ξ0, ξ1)
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=

(
λ

2π

) γ
2
∫

Rγ

f

(
ξ1 − ξ0

t

(∫ t

0

v1(s)ds, . . . ,

∫ t

0

vγ(s)ds

)

+

( γ∑

j=1

α1jzj , . . . ,

γ∑

j=1

αγjzj

))
exp

{
−
λ

2
‖z‖2

Rγ

}
dm

γ
L(z)

for (ξ0, ξ1) ∈ R2, where z = (z1, . . . , zγ) and the αljs are as given in (21).

Theorem 5.4. If, in Theorem 4.4, G is replaced by H(p = 1) which is as

given in Theorem 5.1, then the conclusions of Theorem 4.4 hold true, where

Eanwλ [H |Xn] and E
anfq [H |X1] are given by (30) and (31), respectively, replac-

ing λ by −iq.

Proof. For λ ∈ C+, for ~ξn ∈ Rn+1 and for v ∈ L2[0, t],
∣∣∣∣exp

{
i(v, [~ξn]) +

1

2λ

[ γ∑

j=1

[λizj + cj(P
⊥v)]2 − ‖P⊥v‖22

]}∣∣∣∣

= exp

{
−
Reλ

2

γ∑

j=1

z2j −
Reλ

2|λ|2

[
‖P⊥v‖22 −

γ∑

j=1

〈P⊥v, ej〉
2
2

]}
≤ 1

by (23) and the Bessel’s inequality so that

|Eanwλ [H |Xn](~ξn)| ≤ ‖σ‖

(
|λ|

2π

) γ
2
∫

Rγ

|f((~v, [~ξn]) + TAT (z))|dmγ
L(z)

by Theorem 5.1. Let Ω be a bounded subset of C+ and take MΩ > 0 such that

|λ| ≤MΩ for all λ ∈ Ω. Then for λ ∈ Ω and for ~ξn ∈ Rn+1,

(33) |Eanwλ [H |Xn](~ξn)| ≤ | det((AT )−1)| ‖f‖1‖σ‖

(
MΩ

2π

) γ
2

by the change of variable theorem. The theorem now follows from Theorems
3.2 and 5.1. �

Corollary 5.5. If, in Corollary 4.5, G is replaced by H which is as given in

Theorem 5.4, then the conclusion of the corollary holds true, where Eanwλ [H |
Xn] is given by (30).

By Theorems 3.4, 5.1 and (33) we can easily obtain the following theorem.

Theorem 5.6. If, in Theorem 5.4, the conditions (iii) and (iii)′ of Theorem
3.2 are replaced by (14), then conclusions of Theorem 5.4 hold true.

By Theorems 3.8, 5.1 and (33), we can also obtain the following theorem.

Theorem 5.7. If, in Theorem 4.8, G is replaced by H which is as given in The-

orem 5.4, then the conclusions of Theorem 4.8 hold true, where Eanwλ [H |Xn]
and Eanfq [H |Xn] are as given in Theorem 5.1.
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Corollary 5.8. If we replace G in Corollary 4.9 by H which is as given in The-

orem 5.4, then the conclusion of the corollary holds true, where Eanfq [H |Xn]
is as given in Theorem 5.1.

The following theorem now follows from Theorems 3.10, 5.1 and (33).

Theorem 5.9. If, in Theorem 4.10, G is replaced by H which is as given in

Theorem 5.4, then the conclusions of Theorem 4.10 hold true, where Eanwλ [H |
Xn] and E

anfq [H |Xn] are as given in Theorem 5.1.

References

[1] R. H. Cameron and D. A. Storvick, An operator-valued function space integral and a

related integral equation, J. Math. Mech. 18 (1968), 517–552.
[2] , An operator-valued function space integral applied to integrals of functions of

class L1, Proc. London Math. Soc. (3) 27 (1973), 345–360.
[3] , Some Banach algebras of analytic Feynman integrable functionals, Analytic

functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), pp. 18–67, Lecture
Notes in Math., 798, Springer, Berlin-New York, 1980.

[4] D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its

applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795–3811.

[5] , Operator-valued Feynman integral via conditional Feynman integrals on a func-

tion space, Cent. Eur. J. Math. 8 (2010), no. 5, 908–927.
[6] D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their

change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009),
no. 2, 421–438.

[7] D. M. Chung, C. Park, and D. Skoug, Operator-valued Feynman integrals via conditional

Feynman integrals, Pacific J. Math. 146 (1990), no. 1, 21–42.
[8] G. B. Folland, Real Analysis, John Wiley & Sons, New York, 1984.
[9] M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean

Math. Soc. 39 (2002), no. 5, 801–819.
[10] G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral: the L1

theory, J. Math. Anal. Appl. 50 (1975), 647–667.
[11] K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the

measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12,
4921–4951.

Dong Hyun Cho

Department of Mathematics

Kyonggi University

Suwon 443-760, Korea

E-mail address: j94385@kyonggi.ac.kr


