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GENERALIZED ANALYTIC FEYNMAN INTEGRALS
INVOLVING GENERALIZED ANALYTIC

FOURIER–FEYNMAN TRANSFORMS AND
GENERALIZED INTEGRAL TRANSFORMS

Seung Jun Chang* and Hyun Soo Chung**

Abstract. In this paper, we use a generalized Brownian motion process
to define a generalized analytic Feynman integral. We then establish several
integration formulas for generalized analytic Feynman integrals, generalized
analytic Fourier-Feynman transforms and generalized integral transforms of
functionals in the class of functionals E0. Finally, we use these integration
formulas to obtain several generalized Feynman integrals involving the gen-
eralized analytic Fourier-Feynman transform and the generalized integral
transform of functionals in E0.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space; that is the space of

real-valued continuous functions x on [0, T ] with x(0) = 0. The concept of

L1 analytic Fourier-Feynman transforms(FFT) was introduced by Brue in

[1]. In [4], Cameron and Storvick introduced an L2 analytic FFT. In [10],

Johnson and Skoug developed an Lp analytic FFT theory for 1 ≤ p ≤ 2

which extended the results in [4] and gave various relationships between the

L1 and the L2 theories. In a unifying paper [13], Lee defined an integral

transform Fγ,β of analytic functionals on abstract Wiener spaces. For cer-

tain values of the parameters γ and β and for certain classes of functionals,

the Fourier-Wiener transform [2], the modified Fourier-Wiener transform
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[3], the Fourier-Feynman transform [1,4] and the Gauss transform are spe-

cial cases of Lee’s integral transform Fγ,β . Also see paper [14] for further

work involving integral transforms.

The function space Ca,b[0, T ] induced by generalized Brownian motion

was introduced by J. Yeh in [16,17] and was used extensively by Chang

and Chung [6]. The Wiener process used in [1-4,9-14] is stationary in time

and is free of drift while the stochastic process used in this paper as well

as in [5-8], is nonstationary in time, is subject to a drift a(t), and can

be used to explain the position of the Ornstein-Uhlenbeck process in an

external force field [15]. However, when a(t) ≡ 0 and b(t) = t on [0, T ],

the general function space Ca,b[0, T ] reduces to the Wiener space C0[0, T ].

In this paper, we obtain several interesting generalized Feynman integrals

involving generalized analytic Fourier-Feynman transforms and generalized

integral transforms of functionals in E0.

2. Definitions and preliminaries

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A

real-valued stochastic process Y on (Ω,B, P ) and D is called a generalized

Brownian motion process if Y (0, ω)=0 almost everywhere and for 0 = t0 <

t1 < · · · < tn ≤ T , the n-dimensional random vector (Y (t1, ω), · · · , Y (tn, ω))

is normally distributed with density function

(2.1)

Wn(~t, ~η) =
(
(2π)n

n∏

j=1

(b(tj)− b(tj−1))
)−1/2

· exp
{
−1

2

n∑

j=1

(
(ηj − a(tj))− (ηj−1 − a(tj−1))

)2

b(tj)− b(tj−1)

}

where ~η = (η1, · · ·, ηn), η0 = 0, ~t = (t1, · · · , tn), a(t) is a continuous real-

valued function on [0, T ] with a(0) = 0, and b(t) is a monotone increasing,

continuously differentiable real-valued function with b(0) = 0 and b′(t) > 0

for each t ∈ [0, T ].

As explained in [16, p.18-20], Y induces a probability measure µ on the

measurable space (RD,BD) where RD is the space of all real valued func-

tions x(t), t ∈ D, and BD is the smallest σ-algebra of subsets of RD with
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respect to which all the coordinate evaluation maps et(x) = x(t) defined on

RD are measurable. The triple (RD,BD, µ) is a probability measure space.

This measure space is called the function space induced by the generalized

Brownian motion process Y determined by a(·) and b(·).
We note that the generalized Brownian motion process Y determined

by a(·) and b(·) is a Gaussian process with mean function a(t) and co-

variance function r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [16, p.187],

the probability measure µ induced by Y , taking a separable version, is

supported by Ca,b[0, T ] (which is equivalent to the Banach space of con-

tinuous functions x on [0, T ] with x(0) = 0 under the sup norm). Hence

(Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced by Y where

B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided

ρB is B(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measur-

able set N is said to be a scale-invariant null set provided µ(ρN) = 0 for all

ρ > 0. A property that holds except on a scale-invariant null set is said to

hold scale-invariant almost everywhere(s-a.e.). If two functionals F and G

are equal scale-invariant almost everywhere, we write F ≈ G.

We denote the function space integral of a B(Ca,b[0, T ])-measurable func-

tional F by

E[F ] =
∫

Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.

In this paper, let Ka,b[0, T ] be the set of all complex-valued continuous

functions x(t) defined on [0, T ] which vanish at t = 0 and whose real and

imaginary parts are elements of Ca,b[0, T ]; namely,

Ka,b[0, T ] = {x : [0, T ] → C | x(0) = 0,

Re(x) ∈ Ca,b[0, T ] and Im(x) ∈ Ca,b[0, T ]}.
Thus Ca,b[0, T ] is a subspace of Ka,b[0, T ].

We are now ready to state the definition of the generalized analytic Feyn-

man integral.
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Definition 2.1. Let C denote the complex numbers. Let C+ = {λ ∈ C :

Reλ > 0} and C̃+ = {λ ∈ C : λ 6= 0 and Reλ ≥ 0}. Let F : Ka,b[0, T ] −→
C be such that for each λ > 0, the function space integral

J(λ) =
∫

Ca,b[0,T ]

F (λ−
1
2 x)dµ(x)

exists for all λ > 0. If there exists a function J∗(λ) analytic in C+ such that

J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the analytic function

space integral of F over Ca,b[0, T ] with parameter λ, and for λ ∈ C+ we

write

Eanλ [F ] ≡ Eanλ
x [F (x)] = J∗(λ).

Let q 6= 0 be a real number and let F be a functional such that Eanλ [F ]

exists for all λ ∈ C+. If the following limit exists, we call it the generalized

analytic Feynman integral of F with parameter q and we write

(2.2) Eanfq [F ] ≡ Eanfq
x [F (x)] = lim

λ→−iq
Eanλ [F ]

where λ approaches −iq through values in C+.

Next, we state the definition of the generalized analytic Fourier-Feynman

transform(GFFT).

Definition 2.2. For λ ∈ C+ and y ∈ Ca,b[0, T ], let

Tλ(F )(y) = Eanλ
x [F (y + x)].

For p ∈ (1, 2], we define the Lp analytic GFFT, T
(p)
q (F ) of F , by the formula

(λ ∈ C+)

T (p)
q (F )(y) = l.i.m.λ→−iqTλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq

∫

Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′dµ(y) = 0

where 1/p + 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by

the formula (λ ∈ C+)

(2.3) T (1)
q (F ) = lim

λ→−iq
Tλ(F )(y)
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if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q (F ) is only defined s-a.e.. We also note

that if T
(p)
q (F ) exists and if F ≈ G, then T

(p)
q (G) exists and T

(p)
q (G) ≈

T
(p)
q (F ).

Let L2
a,b[0, T ] be the Hilbert space of functions on [0, T ] which are Lebesgue

measurable and square integrable with respect to the Lebesgue Stieltjes mea-

sures on [0, T ] induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < ∞ and
∫ T

0

v2(s)d|a|(s) < ∞}

where |a|(t) denotes the total variation of the function a on the interval [0, t].

For u, v ∈ L2
a,b[0, T ], let

(u, v)a,b =
∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b is

a norm on L2
a,b[0, T ]. In particular note that ‖u‖a,b = 0 if and only if

u(t) = 0 a.e. on [0, T ]. Furthermore (L2
a,b[0, T ], ‖ · ‖a,b) is a separable

Hilbert space. Note that all functions of bounded variation on [0, T ] are

elements of L2
a,b[0, T ]. Also note that if a(t) ≡ 0 and b(t) = t on [0, T ], then

L2
a,b[0, T ] = L2[0, T ]. In fact,

(L2
a,b[0, T ], ‖ · ‖a,b) ⊂ (L2

0,b[0, T ], ‖ · ‖0,b) = (L2[0, T ], ‖ · ‖2)

since the two norms ‖ · ‖0,b and ‖ · ‖2 are equivalent.

Let {φj}∞j=1 be a complete orthonormal set of real-valued functions of

bounded variation on [0, T ] such that

(φj , φk)a,b =
{

0 , j 6= k

1 , j = k
,

and for each v ∈ L2
a,b[0, T ], let

vn(t) =
n∑

j=1

(v, φj)a,bφj(t)
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for n = 1, 2, · · · . Then for each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund

(PWZ) stochastic integral 〈v, x〉 is defined by the formula

〈v, x〉 = lim
n→∞

∫ T

0

vn(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists; one can show that for each

v ∈ L2
a,b[0, T ], the PWZ integral 〈v, x〉 exists for µ-a.e. x ∈ Ca,b[0, T ].

Let {α1, α2, · · · } be any complete orthonormal set of functions in the

separable Hilbert space (L2
a,b[0, T ], ‖ · ‖a,b), and for each j = 1, 2, · · · , let

(2.4) Aj ≡
∫ T

0

αj(t)da(t)

and

(2.5) Bj ≡
∫ T

0

α2
j (t)db(t).

We note that for each j = 1, 2, · · · ,

0 < Bj =
∫ T

0

α2
j (t)db(t) ≤

∫ T

0

α2
j (t)d[b(t) + |a|(t)] = ‖αj‖2a,b = 1,

while Aj may be positive, negative or zero.

The following well-known integration formula (see equation (2.20) on page

2929 of [5]) is used several times in this paper. Let h : Rn → R be Lebesgue

measurable and let H(x) = h(〈α1, x〉, · · · , 〈αn, x〉). Then

(2.6)∫

Ca,b[0,T ]

H(x)dµ(x) =
( n∏

j=1

2πBj

)− 1
2

∫

Rn

h(u1, · · · , un)

· exp
{
−

n∑

j=1

(uj −Aj)2

2Bj

}
du1 · · · dun

in the sense that if either side of (2.6) exists, both sides exist, and equality

holds.

Using formula (2.6) we observe that E[〈αj , x〉] = Aj , E[〈αj , x〉2] = Bj +

A2
j and that V ar(〈αj , x〉) = Bj for each j = 1, 2, · · · .



Generalized analytic Feynman integrals 237

Also note that the complete orthonormal set {α1, α2, · · · } in L2
a,b[0, T ] is

completely at our disposal. For example, we could choose the αj ’s to be

continuous and of bounded variation on [0, T ], or we could choose the αj ’s

to be the Haar functions on [0, T ], etc.

Throughout this paper, we will assume that for all complex number z ∈
C̃+ (or z

1
2 ) is always chosen to have positive real parts.

Last, we are ready to state the definition of the generalized integral trans-

form on Ka,b[0, T ].

Definition 2.4. Let F be a functional defined on Ka,b[0, T ]. For each

pair of nonzero complex numbers γ and β, the generalized integral trans-

forms Fγ,βF of F is defined by

(2.7) Fγ,βF (y) =
∫

Ca,b[0,T ]

F (γx + βy)dµ(x), y ∈ Ka,b[0, T ],

if it exists.

Next we describe the class of functionals that we work with in this paper.

Let E0 be the space of all functionals F : Ka,b[0, T ] → C of the form

(2.8) F (x) = f
(〈α1, x〉, · · · , 〈αn, x〉)

for some positive integer n, where f(λ1, · · · , λn) is an entire function of the

n complex variables λ1, · · · , λn of exponential type; that is to say,

(2.9) |f(λ1, · · · , λn)| ≤ AF exp
{

BF

n∑

j=1

|λj |
}

for some positive constants AF and BF .

Remark 2.5. For each m = 0, 1, 2, · · · and for each j = 1, 2, · · · , let

Hj
m(u) denote the generalized Hermite polynomial

Hj
m(u) ≡ (−1)m(m!)−

1
2 (Bj)

m
2 exp

{
(u−Aj)2

2Bj

}
dm

dum

(
exp

{
− (u−Aj)2

2Bj

})
.
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Then the set, for each j = 1, 2, · · · ,
{

(2πBj)−
1
4 Hj

m(u) exp
{
−

(
u−Aj

)2

4Bj

}
: m = 0, 1, · · ·

}

is a complete orthonormal set in L2(R). Now we define

φ(m,k)(x) ≡ Hk
m(〈αk, x〉), m = 0, 1, 2, · · · , k = 1, 2, · · · ,

and

(2.10) Φ(m1,··· ,mk)(x) ≡ φ(m1,1)(x)φ(m2,2)(x) · · ·φ(mk,k)(x).

The functional in (2.10) is called the generalized Fourier-Hermite functional.

Chang, Chung and Skoug showed that the generalized Fourier-Hermite func-

tionals forms a complete orthonormal set in L2(Ca,b[0, T ]), that is to say,

let F be any functionals on Ca,b[0, T ] with

∫

Ca,b[0,T ]

|F (x)|2dµ(x) < ∞,

and for N = 1, 2, · · · , let

FN (x) =
N∑

m1,··· ,mN=0

AF
(m1,··· ,mN )Φ(m1,··· ,mN )(x)

where AF
(m1,··· ,mN ) is the generalized Fourier-Hermite coefficient,

AF
(m1,··· ,mN ) ≡

∫

Ca,b[0,T ]

F (x)Φ(m1,··· ,mN )(x)dµ(x).

Then ∫

Ca,b[0,T ]

|FN (x)− F (x)|2dµ(x) → 0

as N →∞ and

F (x) = l.i.m.N→∞FN (x)

= l.i.m.N→∞
N∑

m1,··· ,mN=0

AF
(m1,··· ,mN )Φ(m1,··· ,mN )(x)
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is called the generalized Fourier-Hermite series expansion of F . For more

details in [7,8]. Furthermore, we can easily check that FN is an element of

E0 for all N = 1, 2, · · · and so the set E0 is dense in L2(Ca,b[0, T ]).

To simplify the expressions, we use the following notations. For γ, β ∈ C,

~u = (u1, · · · , un) ∈ Cn and ~λ = (λ1, · · · , λn) ∈ Cn, we write

f
(
γ~u + β~λ

)
= f

(
γu1 + βλ1, · · · , γun + βλn

)

and

f
(〈~α, x〉)= f

(〈α1, x〉, · · · , 〈αn, x〉).
3. Generalized Feynman integrals, L1 analytic GFFTs and gener-

alized integral transforms of functionals in E0

In this section, we obtain several integration formulas involving general-

ized Feynman integrals, L1 analytic GFFTs and generalized integral trans-

forms of functionals in E0.

Theorem 3.1. Let q0 be a nonzero real number and let F ∈ E0 be given

by (2.8). Then for all nonzero real number q with |q| ≥ |q0|, the generalized

analytic Feynman integral of F exists and is given by the formula

(3.1)

Eanfq [F ]

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
(−iq)−

1
2 ~u

)
exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u.

Proof. For λ > 0, by using formula (2.6) it follows that∫

Ca,b[0,T ]

F (λ−
1
2 x)dµ(x)

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
λ−

1
2 ~u

)
exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u.

Since f is an entire function of exponential type and Bj > 0, the last integral

exists and so it can be analytically in C+. Thus we obtain that
Eanλ [F ]

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
λ−

1
2 ~u

)
exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u.
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Also the last expression above is a continuous function of λ in C̃+ and it is

dominated on the region

R = {λ ∈ C̃+ : |λ− 1
2 | ≤ |2q0|− 1

2 }.
Thus by using dominated convergence theorem, we get

Eanfq [F ]

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
(−iq)−

1
2 ~u

)
exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u.

In fact, by using (2.9) it follows that for all nonzero real number q with

|q| ≥ |q0|,
|Eanfq [F ]|

≤
( n∏

j=1

2πBj

)− 1
2

∫

Rn

AF exp
{
−

n∑

j=1

(uj −Aj)2

2Bj
+

BF√
2|q0|

n∑

j=1

|uj |
}

d~u < ∞.

Hence we have the desired result. ¤

Theorem 3.2. Let q0 and F be as in Theorem 3.1. Then for all nonzero

real number q with |q| ≥ |q0|, the L1 analytic GFFT T
(1)
q (F ) of F exists,

belongs to E0 and is given by the formula

(3.2) T (1)
q (F )(y) = Γ

T
(1)
q (F )

(〈~α, y〉)
for s-a.e. y ∈ Ka,b[0, T ], where

(3.3)

Γ
T

(1)
q (F )

(~λ)

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
(−iq)−

1
2 ~u + ~λ

)
exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u.

Proof. Preceding as in the proof of Theorem 3.1, for all nonzero real

number q with |q| ≥ |q0|, we get

T (1)
q (F )(y)

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
(−iq)−

1
2 ~u + 〈~α, y〉) exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u

= Γ
T

(1)
q (F )

(〈~α, y〉).
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Furthermore, by using equation (2.9) it follows that for all nonzero real

number q with |q| ≥ |q0|,

|Γ
T

(1)
q (F )

(~λ)|

≤
( n∏

j=1

2πBj

)− 1
2

∫

Rn

exp
{

BF

n∑

j=1

|λj |
}

·AF exp
{
−

n∑

j=1

(uj −Aj)2

2Bj
+

BF√
2|q0|

n∑

j=1

|uj |
}

d~u

= A
T

(1)
q (F )

exp
{

B
T

(1)
q (F )

n∑

j=1

|λj |
}

where

A
T

(1)
q (F )

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

AF exp
{
−

n∑

j=1

(uj −Aj)2

2Bj
+

BF√
2|q0|

n∑

j=1

|uj |
}

d~u < ∞

and

B
T

(1)
q (F )

= BF

and so T
(1)
q (F ) ∈ E0. Hence we have the desired result. ¤

Theorem 3.3. Let γ and β be nonzero complex numbers and let F be as

in Theorem 3.1. Then the generalized integral transform Fγ,βF of F exists,

belongs to E0 and is given by the formula

(3.4) Fγ,βF (y) = ΓFγ,βF (〈~α, y〉)

for all y ∈ Ka,b[0, T ], where

(3.5)

ΓFγ,βF (~λ)

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
γ~u + β~λ

)
exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u.
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Proof. For each y ∈ Ka,b[0, T ], by using formula (2.6) it follows that

Fγ,βF (y)

=
( n∏

j=1

2πBj

)− 1
2

∫

Rn

f
(
γ~u + β〈~α, y〉) exp

{
−

n∑

j=1

(uj −Aj)2

2Bj

}
d~u

= ΓFγ,βF

(〈~α, y〉).

Furthermore, by using (2.6) it follows that

|ΓFγ,βF (~λ)|

≤
( n∏

j=1

2πBj

)− 1
2

∫

Rn

AF exp
{

BF |β|
n∑

j=1

|λj |
}

· exp
{

BF

n∑

j=1

|γuj | −
n∑

j=1

(uj −Aj)2

2Bj

}
d~u

≤ AFγ,βF exp
{

BFγ,βF

n∑

j=1

|λj |
}

where

AFγ,βF = AF

( n∏

j=1

2πBj

)− 1
2

∫

Rn

exp
{

BF

n∑

j=1

|γuj |−
n∑

j=1

(uj −Aj)2

2Bj

}
d~u < ∞

and BFγ,βF = BF |β|. Hence Fγ,βF ∈ E0. ¤

Remark 3.4. (1) In [12], the authors gave some conditions for the exis-

tence of integral transforms, convolution products, analytic Fourier-Feynman

transforms and first variations of functionals. In this paper we can give some

conditions for the existence of our issues. But, for simplicity, we emphasize

formulas of Feynman integrals, GFFTs and integral transforms of function-

als in E0 rather than the existence.

(2) Form now on, for simplicity our results, we will assume that gen-

eralized Feynman integrals, L1 analytic GFFTs and generalized integral

transforms in each statements always exist.
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4. Generalized analytic Feynman integrals involving generalized

integral transforms and L1 analytic GFFTs of functionals in E0

In this section we establish a relationship between the L1 analytic GFFT

and the generalized integral transform. We then obtain several generalized

analytic Feynman integrals involving L1 analytic GFFTs and generalized

integral transforms of functionals in E0.

First we establish a relationship between the L1 analytic GFFT and the

generalized integral transform of functionals in E0. To obtain this, we need

following Lemmas 4.1 and 4.2. These lemmas are follow by equations (3.2)-

(3.4) and (3.5).

Lemma 4.1. Let γ and β be nonzero complex numbers and let q be a

nonzero real number. Let F ∈ E0 be given by (2.8). Then the L1 analytic

GFFT T
(1)
q (Fγ,βF ) of Fγ,βF is given by the formula

T (1)
q (Fγ,βF )(z) = Γ

T
(1)
q (Fγ,βF )

(〈~α, z〉)
for s-a.e. z ∈ Ka,b[0, T ], where

(4.1)

Γ
T

(1)
q (Fγ,βF )

(~λ)

=
( n∏

j=1

2πBj

)−1 ∫

R2n

f
(
γ~u + (−iq)−

1
2 β~v + β~λ

)

· exp
{
−

n∑

j=1

(uj −Aj)2 + (vj −Aj)2

2Bj

}
d~ud~v.

Lemma 4.2. Let γ, β, q and F be as in Lemma 4.1. Then the generalized

integral transform Fγ,βT
(1)
q (F ) of T

(1)
q (F ) is given by the formula

Fγ,βT (1)
q (F )(z) = ΓFγ,βT

(1)
q (F )

(〈~α, z〉)
for s-a.e. z ∈ Ka,b[0, T ], where

(4.2)

ΓFγ,βT
(1)
q (F )

(~λ)

=
( n∏

j=1

2πBj

)−1 ∫

R2n

f
(
(−iq)−

1
2 ~u + γ~v + β~λ

)

· exp
{
−

n∑

j=1

(uj −Aj)2 + (vj −Aj)2

2Bj

}
d~ud~v.
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The following theorem is one of main results in this paper.

Theorem 4.3. Let γ, β, q and F be as in Lemma 4.1 with β2 is a nonzero

real number. Then

(4.3) T (1)
q (Fγ,βF )(z) = Fγ,βT

(1)
q

β2
(F )(z)

for s-a.e. z ∈ Ka,b[0, T ]. Furthermore, both of the expressions in equation

(4.3) are given by the expression

( n∏

j=1

2πBj

)−1 ∫

R2n

f
(
β(−iq)−

1
2 ~u + γ~v + β〈~α, z〉)

· exp
{
−

n∑

j=1

(uj −Aj)2 + (vj −Aj)2

2Bj

}
d~ud~v

Proof. By using equations (4.1) and (4.2), we can prove Theorem 4.3. ¤

The following Theorem 4.4, we obtain several Feynman integrals involving

L1 analytic GFFTs and generalized integral transforms of functionals in E0.

These formulas are given by (4.4)-(4.6) and (4.7).

Theorem 4.4. Let γ, β, q and F be as in Lemma 4.1. Then the following

generalized analytic Feynman integrals follow quite readily :

(4.4)

Eanfq [Fγ,βF ]

=
( n∏

j=1

2πBj

)−1 ∫

R2n

f
(
γ~u + (−iq)−

1
2 β~v

)

· exp
{
−

n∑

j=1

(uj −Aj)2 + (vj −Aj)2

2Bj

}
d~ud~v,

(4.5)

Eanfq [T (1)
q (F )]

=
( n∏

j=1

2πBj

)−1 ∫

R2n

f
(
(−iq)−

1
2 (~u + ~v)

)

· exp
{
−

n∑

j=1

(uj −Aj)2 + (vj −Aj)2

2Bj

}
d~ud~v,
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(4.6)

Eanfq [T (1)
q (Fγ,βF )]

=
( n∏

j=1

2πBj

)− 3
2

∫

R3n

f
(
γ~u + (−iq)−

1
2 β(~v + ~w)

)

· exp
{
−

n∑

j=1

(uj −Aj)2 + (vj −Aj)2 + (wj −Aj)2

2Bj

}
d~ud~vd~w,

and

(4.7)

Eanfq [Fγ,βT (1)
q (F )]

=
( n∏

j=1

2πBj

)− 3
2

∫

R3n

f
(
(−iq)−

1
2 ~u + γ~v + (−iq)−

1
2 β ~w

)

· exp
{
−

n∑

j=1

(uj −Aj)2 + (vj −Aj)2 + (wj −Aj)2

2Bj

}
d~ud~vd~w.

Proof. By using equations (3.2)-(3.5), (4.1) and (4.2), we can prove The-

orem 4.4. ¤
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