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ANALYTIC FOURIER-FEYNMAN TRANSFORM AND
FIRST VARIATION ON ABSTRACT WIENER SPACE

Kun Soo CHANG, TEUK SEOB SONG AND IL YOO

ABSTRACT. In this paper we express analytic Feynman integral of
the first variation of a functional F in terms of analytic Feynman
integral of the product of F with a linear factor and obtain an
integration by parts formula for the analytic Feynman integral of
functionals on abstract Wiener space. We find the Fourier-Feynman
transform for the product of functionals in the Fresnel class F(B)
with n linear factors.

1. Introduction and preliminaries

The concept of an L, analytic Fourier-Feynman transform for func-
tionals on classical Wiener space was introduced by Brue in [2]. In
[4] Cameron and Storvick introduced an Lo analytic Fourier-Feynman
transform on classical Wiener space. In [13] Johnson and Skoug devel-
oped an L, analytic Fourier-Feynman transform theory for 1 <p < 2
that extended the results in [2, 4] and gave various relationships be-
tween the [ and Lo theories. In [10, 11, 12], Huffman, Park and Skoug
defined a convolution product for functionals on classical Wiener space
and they showed that the analytic Fourier-Feynman transform of con-
volution product is the product of transforms. In [3] Cameron obtained
Wiener integral of first variation of functional F' in terms of the Wiener
integral of the product with a linear factor. In [6] Cameron and Storvick
applied the result to Feynman integral and then gave formulas for Feyn-
man integral of functionals on classical Wiener space that belong to the
Banach algebra &’ introduce by Cameron and Storvick in [5] . In [17]
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Park, Skoug and Storvick found the Fourier-Feynman transform of func-
tional F* from the Banach algebra S after it has been multiplied with n
linear factors. Recently, Chang, Kim and Yoo established the relation-
ships among Fourier-Feynman transform, first variation and convolution
product on abstract Wiener space (8, 9]. In this paper we express ana-
Iytic Feynman integral of the first variation of a functional F in terms of
analytic Feynman integral of the product of F' with a linear factor and
obtain an integration by parts formula for the analytic Feynman integral
of functionals on abstract Wiener space. We find the Fourier-Feynman
transform for the product of functionals in the Fresnel class F(B) with
n linear factors.

Let (H, B,v) be an abstract Wiener space and let {e;} be a complete
orthonormal system in H such that the e;’s are in B*, the dual of B.
For each h € H and z € B, we define a stochastic inner product (h,z)™
as follows;

n—o0

11 (b= { lim 3" (h,e;)(z,e;), if the lifnit exists
0, otherwise

where (-, -} is a natural dual pairing between B and B*. It is well known
[14, 15] that for each A{5 0) in H, (h,-)™ is a Gaussian random variable
on B with mean zero and variance |h|%, that is,

1
(1.2) / exp{i(h,z)" }dv(z) = exp{——§|h|2}.
B
Let M{H) denote the space of complex-valued countably additive
Borel measures on . Under the total variation norm || - || and with

convolution as multiplication, M({H) is a commutative Banach algebra
with identity [1].

A subset F of B is said to be scale-invariant measurable provided aF
is measurable for each a > 0, and a scale-invariant measurable set N is
said to be scale-invariant null provided v(aN) = 0 for each o > 0. A
property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s-a.e.). If two functionals F' and G
are equal s-a.e., then we write F' = G. For more detail, see [7]. For a
functional F' on B, we denote by [F| the equivalence class of functionals
G which are equal to F' s-a.e., that is,

[F] = {G: G~ F}.

We now introduce the Fresnel class F(B) of functionals on B. The
space F(B) is defined as the space of all equivalence classes of stochastic
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Fourier transforms of elements of M (H), that is,

(1.3)
F(B) = {[F]: F(z) = [H exp {i(h,z)" }Ydo(h), = € B,oc € M{H)}.

As is customary, we will identify a function with its s-equivalence class
and think of F(B) as a collection of functionals on B rather than as a
collection of equivalence classes.

It is well-known [14, 15] that F(B) is a Banach algebra with the norm

|F|| = |l|| and the mapping ¢ — F is a Banach algebra isomorphism
where ¢ € M(H) is related to F by
(1.4) Fla) = / expli(h, z)~}do(h), =€ B.

H

Let C, C, and CJ denote the complex numbers, the complex num-
bers with positive real part, and the nonzero complex numbers with
nonnegative real part, respectively.

Let I be a C-valued scale-invariant measurable function on B such
that

(1.5) IO = fB FOY20)dv(z)

exists as a finite number for all real A > 0. If there exists a function
J*(A) analytic in Cy such that J*(A) = J(X) for all A > 0, then J*(A) is
defined to be the analytic Wiener integral of F' over B with parameter
A, and for A € C we write

(16) f " Pleyv(a) = TV

B

Let F be a functional on B such that [;"* F(z)dv(z) exists for all
A € C4. If the following limit exists for nonzero real g, then we call it
the analytic Feynman integral of F' over B with parameter ¢ and we
write

anfy anw
(L.7) ./B F(x)dv(z) = AEIEliq . F(z)dv(zx)

where A — —ig through C,.

Notation.
(i) For A€ C, and y € B, let

(18) (T5(F))(y) = [B " Fle + y)dv(a).
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(ii) Given a number p with 1 < p < o0, p and p’ will always be related
by % + 1717 = 1.

(iii) Let 1 < p < o0 and let G, and G be scale-invariant measurable
functionals such that, for each o > 0,

(1.9) lm | |Gulaz) — Glaz)]P dv(z) = 0.
B

n—00

Then we write

(1.10) Lim. (w?)(G,) = G

n—oc

and call G the scale-invariant limit in the mean of order p’. A sim-
ilar definition is understood when n is replaced by a continuously
varying parameter.

DEFINITION 1.1. Let ¢ # 0 be a real number. For 1 < p < 00, we

define the L, analytic Fourier-Feynman transform Tq(p ) (FYof F on B
by the formula (A € C;)

(1.11) (TP F))(y) = Lim, (wf NI (F)()

whenever this limit exists.

We define the L, analytic Fourier-Feynman transform Tq(l)(F) of F
by (A € Cy)

(1.12) (TV(ENw) = lim (TA(F))(y)

A——ig

for s-a.e. y € B whenever this limit exists.

In particular, we set

anfq
(1.13) (TP (F))(0) = / Flz)dv(z), 1<p< oo
B
We note that, for 1 < p < oo, Tq(p )(F) is defined only s-a.e.. We
also note that if Tép ) (F1) exists and if Fy =~ Fy, then Tq(p ) (F») exists and
TR = T (Fy).
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2. The Wiener integral of variations of functionals

In this section, we obtain a basic theorem which expresses the analytic
Feynman integral of the first variation of a functional F' in terms of the
analytic Feynman integral of the product of F' with a linear factor.

DEFINITION 2.1. Let F be a Wiener measurable functional on B and
let w € B. Then

(2.14) SF(xlw) = %F(m + tw)|i=0

(if it exists) is called the first variation of F(z) in the direction w.

The following theorem expresses the Wiener integral of the first vari-
ation of a functional F' in terms of the Wiener integral of the product
of F with a linear factor.

THEOREM 2.2. Let (H,B,v) be an abstract Wiener space and let
w € H. Let F(z) be a Wiener integrable functional on B and let F(x)
have the first variation 6F(z|w) for z € B. Suppose that there exists a
Wiener integrable functional G(z) such that for some positive 7,

(2.15) sup |0F(z + tw|w)| < G(z),
|ti<n

then both members of following equation exist and they are equal:
{2.16) f SF{z|w)dv(z) = / F(z)[(w, z)™]dv(x).
B B
Froof. We note that

e,
SF(z + tw|w) = gy @+ tw A dw) =0

d
(2.17) = 3—#F(:c + pw)| =t

= %F(ertw)

and since the first member of this equation exists, so does the last. By
the mean value theorem, we obtain F'(z + tw) = F(x) + t6F (z + Otw|w)
for some # in 0 < # < 1 depending on t. Hence it follows from the
integrability of (2.15) and of F(z) that

(2.18) sup {F{x + tw)]
|t|<n
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is integrable on B. Now for |¢| < 5, we have the Cameron-Martin
translation theorem in [16]

(2.19) LF(m)dv(m) = exp{“%t2|w|2}

-/BF(sc+tw)exp{—t(waff)w}d"(x)'

Differentiating formally with respect to ¢ and the setting ¢ = 0, we obtain

(2.20) f 5 F (z]w)dy(z) = f F(o)[(w, z)~|dv(z).
B B
To justify this differentiation under the integral sign, we must show that
(2.21) sup |6F(z + tw|w) — F(z + tw) exp{—t{w, 2}~ }w, z)™|
[t|<m
is Wiener integrable on B for some 1; > 0. But it follows from the
integrability of (2.18) that for some iz > 0

(2.22) sup |8F(z + tw|w)| exp{m {w, z)~|}
[£]<n2

is Wiener integrable on B. Similarly it follows from the integrability of
(2.18) on B that for some 73 > 0

(2.23) sup |F (@ 4 1) expll ()} )"

<m3
is Wiener integrable on B. Taking m1 = min{m, 73}, we obtain the
Wiener integrability of (2.21) on B. Thus the theorem is established. [

COROLLARY 2.3. Let (H, B,v) be an abstract Wiener space and let
w € H. For every p > 0 let F(px) be Wiener integrable on B. If F(pz)
have the first variation §F(px|pw) for all z in B. Suppose that there
exists a Wiener integrable functional G(z) such that for some positive
function n(p)
(2.24) sup |5 (px + ptulpw)] < G(x),
[£[<n(p)

then
@) [ sF(polpu)dnie) = [ Flpml(wa) lv@)

Proof. We apply Theorem 2.2 to the functional after a change of
scale. To do this we set’

H(z) = F(pz)
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and note that
H(x + tw) = F(pz + tpw)

and
2H(:c+1§w)| = aF(:c+t w)|
o t=0 = B o W) =0
or
6H (z|w) = 6F (pz|pw)
and the existence of either member implies that of the other. a

Our next basic theorem expresses the analytic Feynman integral of
the first variation of a functional F in terms of analytic Feynman integral
of the product of F with a linear factor.

THEOREM 2.4. Let (H,B,v) be an abstract Wiener space and let
w € H. For every p > 0 let F(px) be Wiener integrable on B. Let
F(pz) have the first variation §F (pz|pw) for all z in B. Suppose that
there exists Wiener integrable G(zx) such that for some positive function

n(p),

(2.26) sup |0F (pz + ptw|pw)| < G(z),
lt<n(p)

then if either member of the following equation exists, both analytic
Feynman integrals below exist, and for each ¢(# 0) € R

anfq anfq
(2.27) f AR (z|w)dv{z) = —iq]B F(z)[(w, z)7]dv(z).

B

Proof. Let p be positive and set & = E. Then using (2.25), we have
P

(2.28) LJF(pﬂw)du(m) = /Bé'F(pa:|pz)dv(:c)
- [ Pl o 1av(e)
B
=7 [ Flol(w,pr)av(e).
If we let p = A3, (2.28) becomes

(2.20) /B SP(\ 3 z|w)dy(z) = A fB FO2)[(w, A~ 2)]dv(z).
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Thus by the definition of the analytic Wiener integral, if either side of
the following equation exists, then both exist and we have

(2.30) fB T S F(w)dv(z) — A fB " P @) [(w, ) v (z).

Letting A — —igq through C_., we have

anf, anfq
(2.31) f SF(zlw)dv(z) = —iq ]é F@)(w2)ldvz).

B

3. Integration by parts formula

In this section we obtain an integration by parts formula for analytic
Feynman integrals and for Fourier-Feynman transform. We first state
several facts,

(i) Let F and G be in F(B) with associated measures f and g re-
spectively. Then, as was shown in [14, 15], their product K = FG is in
F(B) with associated measure % satisfying [|k|| < ||f||llgli where || - || is
the total variation over H.

In [8, 9], Chang, Kim and Yoo obtained following facts for the Fourier-
Feynman transform and the first variation on B.

(i) Let F be in F(B) with associated measure f. Then, for all p
with 1 < p < o0, the Fourier-Feynman transform Tép)(F) exists for all
g € R - {0} and is given by the formula

(332)  (TPF)E) = /H exp{i(h,y)”—z—ZIhIQ}df(h)

= [ explithu)Yu(h
for s-a.e. y in B where u is a complex Borel measure on H defined by
i
u(B) = [ exp{— WP} (k)
E 29

for every Borel set E in H, and so ||u| < {|f]|-
(iii) Let F € F(B) so that

(3.33) F(z) = /1 expli(h,a) }f ()

where f satisfies the condition / |k||df (k)| < oo. Then for each w € H
H
and for s-a.e. ¥ € B, the first variation of F, §F(y|w) is in F(B) and is
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given by the formula
B30 6Pl = [ ilhw)exnlith,y) brR)
H

_ / exp{i(h, y)™ Ydfu(h)
H

where f,(F) -E/ ith,w)df(h), £ € B(H), and so
E

| fuoll < MLIthf(h)l < 0.

(iv) Let F and G be elements of F(B)} with associated measures f
and g respectively, where f and g satisfy

] W)+ o] < oo
For each w € H,
F(z)6CG (z|w) + §F (z|w)G(x)
is an element of F(B).
(v) Let F be given as in (iv) and let 1 < p < o0 and ¢ € R — {0}.
Then for each w € H and for s-a.e. y € B,
(3.35)T" (SF(-lw))(y) = 6T (F)(ylw)

= LI i(h,w) exp{i(h,y)N — %lhlz}df(h)-

In the fellowing theorem, we obtain an integration by parts formula
for analytic Feynman integral over B.

THEOREM 3.1. Let F, G, f,g and w be given as (iv) above. Then for
all g e R — {0},

anfg
(3.36) ]B [F(z)dG(zjw) + dF(z|w)G(z)|dv(z)

anfq
I /B F(z)G(2)((w, z))dv(z).
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Proof. Let K(z} = F{z)G{(z}. Then for all p > 0 and ¢t ¢ R.

(3.37) 6K (o + ptw|ow)|
= [F(pz + ptw)$G(pz + ptw|pw)
+8F (pz + ptwipw)G(pz + ptw)|

5pllflllw!Lihlldg(h)l+p||9|||w|]H|hlldf(h)|

and the last member of the above expression is Wiener integrable in z
for all p > 0. Also K(z) is Wiener integrable and so by Theorem 2.4,
stated in Section 2, equation (3.36) holds for all ¢ € R — {0}. ]

The following integration by parts formula for Fourier-Feynman trans-
form follows from (i}~{v) and Theorem 3.1.

THEOREM 3.2. Let F, G, f,g and w be given as in Theorem 3.1. Then
for1 <p < oo andgelR-—- {0}

anfy
(3.3s)fB ([T (F) ()T (C)(zlw) + 6T (F) (z|w) TP (G) () jdv(z)

anfq
— —ig / TP (F) ()T (G)(#) (w, )™ 1dv ().
B

4. Transforms of functionals in F(B) multiplied with » linear
factors

In this section we establish the Fourier-Feynman transform of func-
tionals of the form

(4.39) F,(z) = F(z) _H(wj, z)™~

with F' € F(B) and each w; € H.
We will show that the condition

(4.40) /H [h[7df (R)] < oo

will ensure the existence of Tq(p)(Fn)(y) for s-a.e. y € B. In addition,

since
(4.40) implies that

(4.41) [ 1) < o0
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for k =1,--+ ,n — 1, condition (4.40) will also ensure the existence of
Tép}(Fk) fork=1,--- ,n—1

The next theorem gives a recurrence relation in which we express the
transform of Fj, in terms of the transforms and variation of Fj_.

THEOREM 4.1. Assume that qup)(O'Fk‘l(4|wk))(y):5T[§p) (Fro1)(y|we)

exists for s-a.e. y € B. Then T(}p )(Fk)(y) exists for s-a.e. y € B and is
given by the recurrence relation

(4.42) TP (Fo)(y) = (é)Tép)(fSFkl(-IWk))(yH (wis 9)“ T (Fio1)(9)-

Proof. Since T(}p)(éFk_l(-|wk))(y) exists, we know that §F; |(pz +
y|lwy) is Wiener integrable for each p > 0 and hence by Theorem 2.4,

(4.43) TP (5Fj_1 () ()
anfq
= / (st__l(SC + ylwk)dy(m)
B
anf
anf
+ig fB Fioi(z + y)(wg, y)~dv(z)

= —ig /:fq Fi(z + y)dv(z) + iq(wk, y)~ f:lfq Fi—1{z + y)dv(z)
= ~iqT{P (Fie)(y) + ialwe, 9) TP (Fi1) (v).

Now solving (4.43) for Tép (F)(y) yields (4.42) as desired. O

Our next result, which follows from Theorem 4.1 gives a recurrence

relation for TP (6 Fi( w1 ) (@) = 6T (F) (y|wesr).

THEOREM 4.2. Assume that

(4.44) 52Tq(p)(Fk—l)('lwk)(y|wk+l) = 5T(§p)(5Fk—1('lwk))(yl'wk+1)



496 Kun Soo Chang, Teuk Seob Song and Il Yoo

exists for s-a.e. y € B. Then Tép ) (0Fp(-|wr+1))(y) exists for s-a.e. y € B
and is given by the recurrence relation

(445 TP (O Fe(lwes1)) () = (%)JTé’J)(5Fk_1(-IWk))(y1wk+1)

+ (wi, Wi )T (Fra1)(w)
+ (wi, )~ TP (O Fomr (i 1)) (1)
Next we will use Theorem 4.1 and Theorem 4.2 to establish that
equation (4.42) is valid for k¥ = 1,2,--- ,n where of course Fy = F.

First, for F' € F(B) assume that its associated measure f satisfies
Sy |Rlldf(R)| < oo. Then by (ii) and (iii) in Section 3 above, we see

that 6F (y|lw,) and TP (SF(-jw))(y) = 6T (F)(yjun) are in F(B). A
direct calculation shows that

@t6) TP (E)ghor) = [ ilhwi) exp{ithy) - gl ()

holds for s-a.e. ¥ € B. Hence using Theorem 4.1 with k = 1, we see
that

@A TPE) = CITP E)lwn) + ) TP )
for s-a.e. y € B.

Next assume that f, the associated measure F ¢ F(B), satisfies

] Ih[21df (B)] < oo.
H

‘We see that
(4.48)

ST () (-fwr ) (ylwa)=— fH <h,w1><h,wz>exp{z'(h,yr—giqlhﬁ}df(h)
for s-a.e. y € B. In addition 827" (F) is in F(B) and so by equation
(4.45),

(4.49) ST (F1) (y|ws)

TP (5Fy (- 1wa)) (y)

. (3)52%@) (F) (e ) (glwe) + (w1, w) TP (F)(y)

+ (w1, y) T (F) (ylws)

il
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for s-a.e. y € B. Hence using Theorem 4.1 with k = 2, we see that
i ~

(450)  TP(F)(y) = (ST (F)(whon) + (w,y) TP (F1) ).

for s-a.e. y € B.

Continuing in this manner, we see that if f, the associated measure
of F € F(B), satisfies [}, |h|?|df (k)| < oo, then

(51)  ETO(F) o) (fwa) - (o) @)
-/ (Ef(h’ wy)) exp i, )™ = -1 }ar(h)

for s-a.e. y € B. In addition, 5”Tép)(F ) is in F(B) with associated
measure i satisfying

lall = (ﬁ ijf)fj |RI"df (h)] < oo.
=1 i

Hence 5Tq(p ) (Fp-1(y|lwn)) exists for s-a.e. y € B and is given by

(4.52)  GTF (Fra)(ylwn)
— TP (6P, 1 (-hwn))(w)
_ (g)o (w1, )T (Fa2)(9) + (-1, 1) 6T (P} gl
+ (2)1 [(wnfz, W1 )T (Fr_3)(ylwn) + (wn—2, wn)
- STPNFy ) ylwn 1) + (wn_g,y)NézTép)(FnMS)('\wn—l)(mwn)]
2w, 00 2) T Fr) i) )

(

(Wn 3, Wn—1 >52Tq(p) (Fr—a)(lwn—2)(y|wn)
(wn, W }SP T ()2} (wiwn-1)
(n3,9) TP (P ) (1wn—2)(wn1) (ylwr)|

2 [, 00) TP (F) ) ) - o) o)

- {wn, wa)d" 2T (F)(chwn)(hwa) -+ () (tln)
e g, w8 2T (F) ) (fg) - (o) (o)
+ (wn, ) T () () - (fewn-1)(yln)]
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tvn lsn
+(E)” LT () w ) - (lwne) (ylwn)-
Thus by Theorem 4.1 with & = n, we obtain that
i ~
(453) TP (Fa)(w) = (WL (Fa1)(whun) + (wa 9) TP (Fa1)(w)

for s-a.e. y € B.

THEOREM 4.3. Let Fo(z) = F(z)[]7_(w;,z)~ with F € F(B)

whose associated measure f satisfies fH |h|"|df (h)| < oo. Then for
k=1,2,...

(4.54) T(P (F)(y) = % S 1[6’1“(?’) )(y[wj+1)( ﬁ ('wE:y)N)]
=0 b=5+2
k
Po([Te0)

for s-a.e. y € B.

Next, for special cases n = 1,2 and 3, we express Tép)(Fl),Tq(p) (F2)
and T3P (F3) in terms of ToP(F), 6T (F), 82T (FY and TP/ (F).

(455  TO(F)@) = (g)aTgf’)(F)(ylwl) T (w1, 5)~ TP (F) ().

(4.56)  TP(F)(y)
= (g)262T4P>(F)(-|w1)(y|wz) + (g) [, 9)~ 6T (P (ylwn)
+ (w3, y)“STEN(F) (ylun) + (wr, w2) TP (FNy)
+ (w1, 1) (w2, ¥) TP (F) ).
(457  TP(F)(y)
= YT E) o) o) )
P (w0 ST (F) o) o)

+ (w2, ) TP (F) (-fun ) (yfws)
+ (w3, y) ST (F)(-fwn ) (ylws)



Analytic Fourier-Feynman transform 499

+ (wi, w)STP (F)(ylws) + (w1, w3)STP (ylws)
+ (wa, w3)ST) (F)(y|w1)]
_|_

CH{TP ) (1, ) + G, ) )

+ (w5,9)™ (wr,w2) | + (w2,9)™ (w,1) 0T (F) (yhun)
+ (w1, )~ (w3, y) ™ 5T (F) (ylw) + (wi, y) ™ (w2, y)™
ST (F)(yhus) } + (w1,9) (w2,9) ™ (ws,9) T (F) ).

Finally, setting y = 0, we obtain the following Feynman integration
formulas.

anf,
(458) TO(R)0) = /; Fla)(w, z)~dv(z)

= &) [ ith.wn) exp{—L-1n*}are).

anf,
(4.59) TP (F)(0) = /B Fa)(w,, 5 (ws, z)"dv ()
_ _(w ](h wi)(h, wg)exp{—ziq|h|2}df(h)
F O wn) [ exp{= P (h),

(4.60)
anfq
TW(F)(0) = ]B F(2)(wy, 7)™ (ws, )" (ws, 2)~dv(x)
= =G0 [ b)) b wa) exp {17} )
4‘(;)2[11'5‘3}{13{2q|h|2}[<w2,w3><h,w1)

+ {w, ws) (h, wa) + (wl,wg)(h,wg)]df(h).
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By the way, if n = 4, we get the following analytic Feynman integra-
tion formula:

(4.61) TP)(F;)(0)

anf, 4
= / F(z) ( H(wj,:c)”)dv(r)

B =1

= (2)4/}{(jljli(h,wj))exp{—%|h|2}df(h)
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