• Title/Summary/Keyword: analog circuits

Search Result 355, Processing Time 0.028 seconds

Test-Generation-Based Fault Detection in Analog VLSI Circuits Using Neural Networks

  • Kalpana, Palanisamy;Gunavathi, Kandasamy
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.209-214
    • /
    • 2009
  • In this paper, we propose a novel test methodology for the detection of catastrophic and parametric faults present in analog very large scale integration circuits. An automatic test pattern generation algorithm is proposed to generate piece-wise linear (PWL) stimulus using wavelets and a genetic algorithm. The PWL stimulus generated by the test algorithm is used as a test stimulus to the circuit under test. Faults are injected to the circuit under test and the wavelet coefficients obtained from the output response of the circuit. These coefficients are used to train the neural network for fault detection. The proposed method is validated with two IEEE benchmark circuits, namely, an operational amplifier and a state variable filter. This method gives 100% fault coverage for both catastrophic and parametric faults in these circuits.

  • PDF

Required characteristics of poly-Si TFT's for analog circuits of System-on-Glass

  • Kim, Dae-June;Lee, Kyun-Lyeol;Yoo, Chang-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.81-84
    • /
    • 2004
  • Required characteristics of poly-Si TFT's are investigated for the implementation of analog circuits to be integrated on System-on-Glass (SoG). Matching requirements on resistor values, threshold voltage and mobility of poly-Si TFT's are derived as a function of the resolution of display system. Effective mobility of poly-Si TFT's required for the realization of source driver is analyzed for various panel sizes.

  • PDF

Fault Evaluation Based on Fuzzy Logic for Analog Electronic Circuits

  • Hashizume, Masaki;Iwata, Yoshihiro;Tamesada, Takeomi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1402-1405
    • /
    • 1993
  • In this paper, a fault evaluation method is proposed, which is to determine whether analog electronic circuits are faulty or not. In our method, evaluation characteristics of an expert test engineer are defined by means of directed graphs. By performing a multi-stage fuzzy inference based on the graphs, novice test engineers can derive a fault evaluation result satisfied by the expert. The effectiveness of our method is checked by some experiments for an amplifier circuit.

  • PDF

PR (1 2 2 1) Signal Decoding for DVD using the Circular Analog Parallel Circuits (순환형 아날로그 병렬 회로망 구조를 이용한 DVD용 PR (1 2 2 1) 신호의 디코딩)

  • Son Hongrak;Kim Hyonjeong;Kim Hyongsuk;Lee Jeongwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.17-26
    • /
    • 2006
  • The analog Viterbi decoder for the PR (1 2 2 1) which is used for BVD read channel is designed with circular analog parallel circuits. Since the inter symbol interference is serious problem in the high density magnetic storage device or DVD, the PRML technology is normally employed for the purpose of minimizing the decoding error. The feature of the PRML technology is with the multi-level coding according to the predetermined combining rule among the neighboring symbols and with the decoding according to the known combining rule. Though the conventional PRML technology is implemented with the digital circuits, the recent trend towards this end is with the utilization of the analog circuits due to the requirements of higher speed and lower power in the DVD read channel. In this study, the Viterbi decoder which is the bottleneck of the PRML implementation is designed with the analog parallel circuit structure. The designed Viterbi decoder for the PR (1 2 2 1) signal shows 3 times faster in the speed and 1/3 times less in the power consumption than thoseoftheconventionaldigitalcounterpart.

Simulations and Circuit Layouts of HTS Rapid Single Flux Quantum 1-bit A/D Converter by using XIC Tools (XIC tools을 사용한 고온 초전도 Rapid Single Flux Quantum 1-bit A/D Converter의 Simulation과 회로 Layout)

  • 남두우;홍희송;정구락;강준희
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.131-134
    • /
    • 2002
  • In this work, we have developed a systematic way of utilizing the basic design tools for superconductive electronics. This include WRSPICE, XIC, margin program, and L-meter. Since the high performance analog-to- digital converter can be built with Rapid Single Flux Quantum (RSFQ) logic circuits the development of superconductive analog-to-digital converter has attracted a lot of interests as one of the most prospective area of the application of Josephson Junction technology. One of the main advantages in using Rapid Single Flux Quantum logic in the analog-to-digital converter is the low voltage output from the Josephson junction switching, and hence the high resolution. To design an 1-bit analog-digital converter, first we have used XIC tool to compose a circuit schematic, and then studied the operational principle of the circuit with WRSPICE tool. Through this process, we obtained the proper circuit diagram of an 1-bit analog-digital converter circuit. Based on this circuit we performed margin calculations of the designed circuits and optimized circuit parameters. The optimized circuit was laid out as a mask drawing. Inductance values of the circuit layout were calculated with L-meter. Circuit inductors were adjusted according to these calculations and the final layout was obtained.

  • PDF

Study on the Design of S/PDIF BC which Can Operate without PLL (PLL없이 동작하는 S/PDIF IC 설계에 관한 연구)

  • Park Ju-Sung;Kim Suk-Chan;Kim Kyoung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2005
  • In this paper, we deal with the research about a S/PDIF (Sony Philips Digital Interface) receiver which can operate without PLL (Phase Locked Loop) circuits. Although a S/PDIF receiver is used in most audio devices and audio processors in these days. yet there are only few domestic researches about S/PDIF. Currently used commercial DACs (Digital-to-Analog Converters) which can decode S/PDIF signals, have a PLL circuit inside them. The PLL makes it possible to extract clock information from S/PDIF digital signal and to synchronize a clock signal with input signals. But the PLL circuit makes many diffculties in designing the SOC (System On Chips) of VLSIs (Vew Large Scale Integrated Ciruits) because it is an "analog circuit". We proposed a S/PDIF receiver which doesn't have PLL circuits and only has Pure digital circuits. The key idea of the proposed S/PDIF receiver. is to use the ratio between a 16 MHz basic input clock and S/PDIF signals. After having decoded hundreds thousands S/PDIF inputs, it went to prove that a S/PDIF receiver can be designed with pure digital circuits and without any analog circuits such as PLL circuits. We have confidence that the proposed S/PDIF receiver can be used as an IP (Intellectual Property) for the SOC design of the digital circuits.

A Study of Digital Adaptive Predistorter Linearizer (디지틀 적응 전치왜곡 선형화기에 관한 연구)

  • 이세현;강종필;이경우;민이규;강경원;김동현;이상설;안광은
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.377-380
    • /
    • 2000
  • In this paper, a new adaptive linearizer architecture with the predistorter is proposed. In the M.Ghaderi's paper, two analog predistorters and an envelope detector are used. Analog circuits for the analog predistorter and the envelope detector can cause imperfection and inaccuracy of the system and make circuits more complex. To solve those problems, most of processes including the predistortion are made by the DSP. The RLS algorithm is applied so that the errors between power amplifier output signals through the postdistorters and predistorted input signals can be converged to the global minimum.

  • PDF

A Digital Signal Processing Circuit Design for Position Sensitive Detectors(PSD), using an FPGA

  • Bongsu Hahn;Park, Changhwan;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.1-107
    • /
    • 2001
  • In this paper, a digital signal processing circuit for Position Sensitive Detectors(PSDs) is introduced to substitute the conventional analog signal processing circuit and to compensate disadvantages of the PSD. In general, the analog circuits have the problems such as noise accumulation, sensitivity for environmental changes, and high cost for manufacturing. Moreover, the intrinsic nonlinearity problem of the PSD makes it hard to measure the position accurately because it is difficult to be overcome the problem by using the conventional analog circuits, which can be solved by using the digital signal processing circuit. The circuit is implemented by using a Field Programmable Gate Array (FPGA). The Pulse Amplitude Modulation(PAM) method is used for reducing the environmental noise effect, and a linear interpolation logic is used to compensate the ...

  • PDF

Inductive Switching Noise Suppression Technique for Mixed-Signal ICs Using Standard CMOS Digital Technology

  • Im, Hyungjin;Kim, Ki Hyuk
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.268-271
    • /
    • 2016
  • An efficient inductive switching noise suppression technique for mixed-signal integrated circuits (ICs) using standard CMOS digital technology is proposed. The proposed design technique uses a parallel RC circuit, which provides a damping path for the switching noise. The proposed design technique is used for designing a mixed-signal circuit composed of a ring oscillator, a digital output buffer, and an analog noise sensor node for $0.13-{\mu}m$ CMOS digital IC technology. Simulation results show a 47% reduction in the on-chip inductive switching noise coupling from the noisy digital to the analog blocks in the same substrate without an additional propagation delay. The increased power consumption due to the damping resistor is only 67% of that of the conventional source damping technique. This design can be widely used for any kind of analog and high frequency digital mixed-signal circuits in CMOS technology

FRONT-END TELEMETRY DATA ACQUISITION UNIT FOR KSLV-I UPPER STAGE

  • Jung Hae-Seung;Kim Joonyun;Lee Jae-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.337-340
    • /
    • 2004
  • Upper stage telemetry system of KSLV- I (Korea Space Launch Vehicle I) is composed of MDU (Master Data Unit), RDU (Remote Data Unit), SRU (Shock Recorder Unit) and Transmitter. RDU is the front-end telemetry data acquisition unit which gathers analog/discrete signals from various sensors and other units, and transmits the processed data to MDU via MIL-STD-I553B data bus. In order to acquire useful data from analog signal, signal conditioning circuits, such as anti-aliasing or amplifying, should be implemented. For this purpose, SCM (Signal Conditioning Module) had been developed. This paper describes hardware structure of SCM and analog signal conditioning circuits for various sensors. Also, sampling time scheme for different sampling rates were designed and tested.

  • PDF