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In this paper, we propose a novel test methodology for 
the detection of catastrophic and parametric faults present 
in analog very large scale integration circuits. An 
automatic test pattern generation algorithm is proposed to 
generate piece-wise linear (PWL) stimulus using wavelets 
and a genetic algorithm. The PWL stimulus generated by 
the test algorithm is used as a test stimulus to the circuit 
under test. Faults are injected to the circuit under test and 
the wavelet coefficients obtained from the output response 
of the circuit. These coefficients are used to train the 
neural network for fault detection. The proposed method 
is validated with two IEEE benchmark circuits, namely, 
an operational amplifier and a state variable filter. This 
method gives 100% fault coverage for both catastrophic 
and parametric faults in these circuits. 
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I. Introduction 

Testing of analog very large scale integration (VLSI) circuits 
has become a challenge and has gained more interest in recent 
years for several reasons, such as increase in the applications of 
analog circuits, integration of whole systems on single chips, 
and the high cost of analog testing. Increased analog circuit 
applications are due to the analog nature of signals in the real 
world.  

The high analog test cost results from many factors, such as 
expensive test equipment, long test development time, and long 
test production time. The development and production test time 
costs constitute a part of the development and production costs 
of the integrated circuits, respectively. The challenge faced by 
test engineers is to develop a test methodology to reduce the 
test cost and to accelerate the time-to-market without 
sacrificing integrated circuit (IC) quality. Consequently, the 
generation and evaluation of an effective test methodology is a 
very important issue in the production of an IC and has direct 
consequences on the price and the quality of the final product. 

II. Faults in Analog Circuits 

During the manufacture of ICs, an enormous number of 
various failures could be present, and it is totally infeasible to 
analyze them individually. Thus, failures are grouped together 
according to their logical fault effect on the functionality of the 
circuit, and this leads to the construction of logical fault models. 

Faults present in ICs can be divided into three classes: 
permanent faults, which are faults in existence long enough to 
be observed at test time; temporary faults (transient or 
intermittent), which appear and disappear in short intervals of 
time; and delay faults, which affect the operating speed of the 
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circuit.  
Permanent faults are further classified into catastrophic faults 

(open and short) and parametric faults (due to disturbance in 
the process parameters). When a catastrophic fault occurs, the 
topology of the circuit is changed. Due to parametric faults, the 
performance parameters of each manufactured circuit deviate 
from the nominal one and therefore correspond to a different 
point in each parameter space. If each parameter of the circuit 
is within a fault free space, then the circuit is treated as fault 
free; otherwise, it is considered a faulty circuit.  

In this paper, catastrophic and parametric faults are taken as 
fault models for analog circuits, which are designed with 
resistors, capacitors, MOSFETs, and bipolar junction 
transistors. The testing issues related to these faults are 
addressed in this study. 

III. Test Pattern Generation 

Since the cost of testing a VLSI chip is a significant fraction 
of the manufacturing cost, the time required to test a chip 
should be minimized, and there should be significant fault 
coverage. The objective of the automatic test pattern generator 
is to find an optimal set of test stimuli which detects all 
modeled faults, that is, a set of test stimuli which when applied 
to the circuit can distinguish between the correct circuit and any 
circuit with a modeled fault.  

The goal of the proposed approach is to compute a set of test 
stimuli that maximizes the fault coverage while minimizing 
test access. Therefore, the problem of test signal generation is 
an optimization problem in principle. Test vector generation 
using deterministic techniques is highly complex and time 
consuming because of the extremely large search spaces 
involved. Therefore, artificial intelligence methods have gained 
much attention [1], [2].  

Genetic algorithms are search optimization algorithms based 
on the mechanics of natural genetics that attempt to use similar 
methods for selection and reproduction to solve various 
optimization problems. Genetic algorithms have proven to be 
effective in VLSI applications, including circuit layout and 
partitioning, cell placement, routing, and automatic test 
generation. The proposed method uses a genetic algorithm for 
the generation of the test stimulus which detects both 
catastrophic and parametric faults present in the circuit under 
test (CUT). 

In the literature, a genetic algorithm is used as a test pattern 
generator [1], [2] to generate a piece-wise linear (PWL) 
stimulus. In [1] and [2], multiple node points in the circuits are 
considered for detecting faults in the CUT. However, in 
complex systems all nodes in the circuit may not be accessible. 
Therefore, in this work only the output node is considered for 

measurements and the output response is analyzed using 
wavelets.  

1. PWL Signal Generation 

By exciting the CUT with pulses and ramps whose 
frequency spectrum stretches over a wide range of frequencies, 
all faults can be made visible in the measurement space. Thus, 
a transient PWL signal is generated for detection of both 
catastrophic and parametric faults present in the circuits. To 
generate the PWL test signal, a genetic algorithm is used. Each test 
vector is a transient stimulus.  

Figure 1 shows an example test vector. The amplitude limit 
for each test vector is fixed based on the allowable range of 
input signal for the circuit, and the frequency of the stimulus is 
fixed based on the allowable operating frequency of the circuits. 
For example, if a circuit has a supply voltage of 2.5 V, a gain of 
2, and a 1 MHz bandwidth, then the amplitude range for the 
PWL stimulus is fixed from -1 to +1 and the frequency is fixed 
from 1 Hz to 1 MHz. The length of the PWL signal is fixed 
based on the amplitude level and frequency of operation of the 
CUT. Initial random vectors (PWL test signals) are selected 
such that all amplitude levels are covered.  

 

 

Fig. 1. PWL test vector. 
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2. Bounds for Parameters 

For the given CUT, the bounds of the parameters are found 
as follows. 

In general, a circuit is bounded by n specifications, S =    
[s1, s2,∙∙∙, sn]. For designing the circuit, m parameters, P =    
[p1, p2,∙∙∙, pm] are used. Each specification is dependent on one 
or more parameters. Under single parametric (pi) fault 
assumption, upper and lower bounds of the parameters are 
fixed for each specification. Given an acceptable range of sj 
(upper bound sj

u, lower bound sj
l), the accepted tolerance range 

of pi (upper bound pi
u , lower bound pi

 l) can be found as shown 
in Fig. 2. 

The final upper and lower bounds of the accepted range for 
pi are found as follows: 

 
 pi

u = min (pi1
u, pi2

u,∙∙∙, pin
u),            (1) 

 pi
l = max (pi1

l, pi2
l,∙∙∙, pin

l).            (2) 
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Fig. 2. Bounds for parameters. 

sj
l 

sj

sk

pi

sj
u 

pij
l pij

u 
Pass

pik
l pik

u 
Fail Fail 

Fail Fail Pass

pj
l pj

u 
Nominal value 

 
 
After setting the bounds for parameters, the circuit is 

simulated under fault-free and faulty conditions.  

3. Feature Extraction Using Wavelets  

Wavelet transform (WT) is capable of providing the time and 
frequency resolution simultaneously and hence giving time-
frequency representation of the signal. Deviation of any 
parameter alters the specifications of the circuit. These 
specifications may be represented as time domain or frequency 
domain units. If both time and frequency domain information 
are available, then all possible faults present in the circuit can 
be detected. 

Generally, the presence of catastrophic faults changes the 
functioning of the circuit. Some of them do not change the 
circuit functioning fully and affect only the specifications of the 
circuit. In such cases, it is necessary to obtain both time and 
frequency domain information about the signal; therefore, 
wavelet decomposition is performed on the output signal. 

The output voltage response of the signal is captured and is 
sampled with the sampling frequency of 5f, where f is the basic 
frequency of the signal. When this signal passes through the 
filter bank, the multiresolution decomposition of the signal 
takes place. Two filters are present at each stage of resolution. 
The first filter is the mother wavelet, which is high pass in 
nature. The second filter is low pass in nature. The 
downsampled output of the high pass filter provides the detail 
coefficients, and the low pass filter provides the approximation 
coefficients. The detail and approximation coefficients reflect 
the high and low frequency contents of the signal. 

The frequency components at different levels in the 
decomposed signal for the signal of frequency 5f are shown  
in Table 1. Since the approximation coefficients give the basic 
structure of the signal, approximation coefficients are used for 
analysis. For the selection of a suitable wavelet, analysis is 
performed using different wavelets and one which shows 
maximum classification efficiency is chosen for classification 
of faulty circuits. Since the sampling frequency is 5f, the signal 
is decomposed into five levels. The wavelet coefficients from 
level one to level three contain most of the information about 
the signal. 

Table 1. Frequency components at different levels in the decomposed 
signal. 

 Detail coefficient Approximation coefficient

Level 1 2.5f –5f 0f –2.5f 

Level 2 1.25f –2.5f 0f –1.25f 

Level 3 0.625f –1.25f 0f –0.625f 

Level 4 0.3125f –0.625f 0f –0.3125f 

Level 5 0.15625f –0.3125f 0f –0.15625f 

 

 

Fig. 3. Test pattern generation using genetic algorithm and 
wavelets.
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4. Proposed Specification Driven Test Pattern Generation 
Method 

An overview of the proposed test generation methodology is 
shown in Fig. 3. The input to the proposed test generator 
consists of the circuit description and the specifications of the 
circuit. The output of the test generator consists of test stimuli. 
The nominal specifications (gain and BW) for the CUT are 
found. The acceptable deviation for each parameter (internal 
and external) is decided based on the given lower and upper 
bound of the circuit specifications as discussed in section III.2. 
After the bounds for the parameters are set, the circuit is 
simulated under fault-free and faulty conditions. 

A genetic algorithm is used to find the optimal test stimulus. 
The initial population is generated randomly. All the 
parameters in the circuit are varied within their acceptable 
range of values and Monte Carlo analysis is performed for each 
test pattern. The same test patterns are applied to the fault-free 
circuit and the nominal results are observed. The output signal 
is sampled and wavelet decomposition is performed for every 
Monte Carlo result as well as the nominal result. The root mean 
square error (RMSE) is calculated between the wavelet 
coefficients of the nominal result and the wavelet coefficients 
of each Monte Carlo result. From this array of MSE values, the 
minimum and maximum values are chosen. These values 
determine the acceptable (threshold) range for the fault free 
circuit. 

Then faults are introduced in the circuit one by one from the 
fault list, and faults are simulated for each test vector. The 
RMSE is calculated as before using wavelets. If this RMSE 



212   Palanisamy Kalpana et al. ETRI Journal, Volume 31, Number 2, April 2009 

Table 2. Opamp circuit results in one generation. 

PWL representation Test 
vector 0.0u 0.5u 1.0u 1.5u 2.0u 2.5u 3.0u 3.5u 4.0u 4.5u 5.0u 

Fault 
coverage (%)

1 0.5 1.0 0.0 -1.0 1.0 1.0 -0.5 -0.5 0.5 0.5 -0.5 86.67 

2 0.0 1.0 -1.0 -1.0 1.0 0.5 1.0 0.0 0.5 1.0 1.0 100 

3 0.0 1.0 -0.5 -0.5 -1.0 1.0 0.5 0.5 -0.5 -1.0 -1.0 86.67 

4 -0.5 -1.0 0.5 0.0 0.0 0.0 0.5 -1.0 0.0 -1.0 0.5 86.67 
 

 

Fig. 4. Benchmark Opamp. 
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Fig. 5. Benchmark state variable filter. 
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value lies outside the threshold range, then the test signal is 
selected as a test signal detecting that particular fault. The 
number of faults detected by this particular pattern determines 
its fitness. The test pattern with the highest fitness value, that is, 
the pattern which detects the maximum number of faults, is the 
best pattern for the current generation. This pattern will be 
passed on to the next generation. 

Crossover is performed between the best pattern and another 
pattern in the population. This results in two children. The 
fitness of each child is calculated as before. Of the two children, 
the one that is more fit is passed on to the next generation. Thus, 
the population for the next generation is obtained. This process 

continues until one of the stopping criteria is met. 
The IEEE benchmark circuits, operational amplifier 

(Opamp) shown in Fig. 4 and state variable filter (SVF) shown 
in Fig. 5 are taken as CUTs for the proposed test pattern 
generation. The Opamp is used in non-inverting amplifier 
mode. The gain and bandwidth are taken as specifications for 
the operational amplifier circuit, and 10% deviation is fixed as 
the bound for each specification. The circuit is simulated with 
these bounds and the limits for the parameters are fixed. The 
results obtained for the Opamp in one generation are shown in 
Table 2. 

IV. Proposed Fault Detection Method Using PWL 
Signal 

The PWL stimulus generated by the genetic algorithm 
technique is used as a test stimulus and the circuits are tested. 
The IEEE benchmark circuits, Opamp, and SVF circuits are 
taken as CUTs. In the proposed method, the bounds for the 
parameters are initially fixed based on the 
satisfaction/violation of the specifications. Then, circuits are 
simulated based on these bounds. The circuits are simulated 
with parametric variations using Monte Carlo simulation. The 
output response is sampled and wavelet analysis is performed. 
Wavelet coefficients are obtained for fault-free and faulty 
responses. 

1. Fault Detection Using Neural Networks 

Artificial intelligence techniques are popularly used in many 
VLSI problems. In many studies neural networks are used in 
fault detection and classification problems. In previous works, 
a back propagation neural (BPN) net and a self organizing map 
are [4] used for fault classification. In [5], a probabilistic neural 
network (PNN) is used for the detection of catastrophic faults, 
but AC current, AC voltage, DC current, and DC voltage are 
the four measurements used for training the neural network. In 
[6] and [7], wavelet coefficients are used as preprocessors for 
the data before the neural network is trained. In these works, a 
BPN network is used for classification and fault detection is  
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Table 3. Classification results of operational amplifier using a PNN
with catastrophic faults. 

PNN 

Db1 Coif1 
Minimum 
fraction 

variance (PCA) 
Spread 

%C %P %Q %C %P %Q

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1001% 

0.3 100 100 100 100 100 100

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1002% 

0.3 100 100 100 100 100 100

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1005% 

0.3 100 100 100 100 100 100

 %C: percentage of correct fault-free classifications 
%P: percentage of correct faulty classifications 
%Q: average of the percentages of correct fault-free and faulty classifications

Table 4. Classification results of SVF using a PNN with catastrophic
faults. 

PNN 

Db1 Coif1 
Minimum 
fraction 

variance (PCA) 
Spread 

%C %P %Q %C %P %Q

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1001% 

0.3 100 100 100 100 100 100

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1002% 

0.3 100 100 100 100 100 100

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1005% 

0.3 100 100 100 100 100 100

 

done only for parametric faults. In the pseudorandom signal 
based testing method [8], a PNN produces better results than 
a BPN network. Therefore, a PNN is used in this proposed 
testing method to detect both catastrophic and parametric 
faults. 

V. Results and Discussion 

1. Catastrophic Fault Detection  

As discussed in section IV, the CUTs are tested for fault-free 
and faulty conditions. Two wavelets Db1 and Coif1 are used 
for catastrophic fault detection and the results are tabulated in  

Table 5. Classification results of operational amplifier using a PNN 
with parametric faults. 

PNN 

Db1 Coif1 
Minimum 
fraction 

variance (PCA)
Spread

%C %P %Q %C %P %Q

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1001% 

0.3 100 100 100 100 100 100

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1002% 

0.3 100 100 100 100 100 100

0.1 100 100 100 100 100 100

0.2 100 100 100 100 100 1005% 

0.3 100 100 100 100 100 100

Table 6. Classification efficiency of various wavelets in SVF. 

Wavelet %C %P %Q 

Db1 85 100 92.5 

Db3 95 100 97.5 

Coif1 85 100 92.5 

Coif3 100 100 100 

 

Tables 3 and 4. The proposed test method used to detect 
catastrophic faults achieves 100% fault coverage in both 
circuits. 

2. Parametric Fault Detection 

The Opmp circuit and SVF are simulated with parametric 
faults. The wavelet coefficients obtained from the output 
response are used in neural networks for parametric fault 
detection. PNN is also used for parametric fault detection. The 
results for the operational amplifier using a PNN are tabulated 
in Table 5. 

The classification efficiency of various wavelets for SVF is 
tabulated in Table 6, and the classification results for SVF are 
shown in Table 7. 

The PWL-based method also achieves a classification 
efficiency of 100% for parametric fault detection.  

The results obtained using the proposed PWL-based testing 
method are compared with the pseudorandom-based testing 
method [8]. The results are compared in Table 8. Both methods 
have 100% fault coverage for catastrophic faults; however, the 
proposed method has higher fault coverage for parametric 
faults than the pseudorandom method. 
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Table 7. Classification results of SVF using PNN with parametric
faults. 

PNN 

Coif3 
Minimum fraction 

variance (PCA) 
Spread 

%C %P %Q 

0.1 100 100 100 

0.2 100 100 100 1% 

0.3 100 100 100 

0.1 100 100 100 

0.2 100 100 100 2% 

0.3 100 100 100 

0.1 100 100 100 

0.2 100 100 100 5% 

0.3 100 100 100 

Table 8. Comparison of results obtained using the pseudorandom and
PWL methods. 

Catastrophic fault Parametric fault 
IEEE bench 
mark circuits 

Pseudo 
random 
method 

PWL 
method 

Pseudo 
random 
method 

PWL 
method 

Operational 
amplifier 100% 100% 94.5% 100% 

State variable 
filter 

100% 100% 95% 100% 

 

 
VI. Conclusion 

In the proposed PWL-based testing method, specification 
driven PWL stimulus is generated using a genetic algorithm. 
The conventional PWL generation method uses measurements 
from multiple nodes in the circuit, whereas the proposed PWL 
generation method takes only the output node measurements. 
This is a very important feature of the proposed method. When 
the circuits were tested with generated PWL signal, it was 
found that the proposed method achieves 100% fault coverage 
for catastrophic faults and parametric faults present in Analog 
VLSI circuits. 
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