• Title/Summary/Keyword: aluminum nitride

Search Result 195, Processing Time 0.027 seconds

아크로 증착된 TiAlN 박막의 특성 연구

  • Jeong, Jae-Hun;Yang, Ji-Hun;Park, Hye-Seon;Song, Min-A;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.269-269
    • /
    • 2011
  • 티타늄-알루미늄(Titanium-Aluminum) 질화물(Nitride)은 고경도 난삭재의 고능률 절삭 분야에 사용되는 공구의 수명 향상을 위한 표면처리 소재로 각광을 받고 있다. 건식고속가공을 효과적으로 수행하기 위해서는 코팅막 재료가 가공 중 발생하는 고온에서도 견디는 우수한 내산화성을 지니면서 내마모, 내충격 특성등의 기계적 성질이 우수한 코팅을 필요로 하며 이러한 분야에 TiAlN을 적용하기 위한 많은 연구가 진행되고 있다. 본 연구에서는 아크(Cathodic Arc) 코팅을 시스템을 이용하여 N2 유량변화에 따라 TiAlN 박막을 제조하고 그 특성을 평가하였다. 아크 소스에 장착된 타겟은 120 $mm{\Phi}$, Ti : Al=50 : 50 at% 의 TiAl 타겟을 사용 하였고, 시편과 타겟 간의 거리는 약 30 cm이며, 시편은 SUS를 사용하였다. 시편을 진공용기에 장착하고 ~10-6 Torr까지 진공배기를 실시하고, Ar 가스를 진공용기 내로 공급하여 ~10-4 Torr에서 시편에 bias (Pulse : 400V)를 인가한 후 아크를 발생시켜 약 5분간 청정을 실시하였다. 플라즈마 청정이 끝나면 시편에 인가된 bias를 차단하고 N2 유량을 변화시키며 코팅을 실시하였다. 질소 유량이 증가함에 따라 색상은 회색에서 어두운 보라색으로 변화하였고 SEM 사진을 통해 Micro paticle 이 감소하는 것을 확인 할 수 있었으며 이는 질소유량이 증가 할수록 표면조도 또한 감소하는 분석결과와도 일치하였다. XRD 분석을 통해 질소 유량이 160 sccm 이상에서 TiAlN이 합성되는 것을 볼 수 있었고 질소 유량이 240 sccm일 때 가장 높은 경도를 보였다. 따라서 본 연구에서 얻어진 결과를 바탕으로 더욱 다양한 조건에서 TiAlN 코팅에 응용한다면 다양한 색상 구현과 내마모성 등에서 많은 장점을 얻을 수 있을 것으로 예상된다.

  • PDF

Kinetic Study of Synthesis of Aluminum Nitride Using Carbon Reduction and Subsequent Nitridation Method (탄소환원질화법에 의한 AlN 합성의 속도론적 연구)

  • Park, Hyungkyu;Choi, Youngyoon;Nam, Chulwoo
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.39-46
    • /
    • 2017
  • AlN powder was prepared by carbon reduction and subsequent nitridation method through lab- scale experiments. AlN powder was synthesized using the mixture of high purity $Al_2O_3$ powder and carbon black at $1,600{\sim}1,700^{\circ}C$ for 0.5~6 hours under nitrogen atmosphere (flow rate of nitrogen gas: $4.7{\times}10^{-6}{\sim}20{\times}10^{-6}m^3/sec$) with variation of charged height of the mixture powder. Experimental results showed that size of the synthesized particles grows with increasing of temperature. The reaction activation energy was calculated as 382 kJ/mol at the temperature range, and it was considered that chemical reaction is the rate determining step. Content of oxygen and nitrogen of the prpared samples were 0.71~0.96 wt% and 30.7~35.1 wt%. The results was similar with those of the commercial AlN product.

Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process (세라믹 방열 복합체의 열전도도 분석 및 Wetting Process를 이용한 SiC/에폭시 복합체)

  • Hwang, Yongseon;Kim, Jooheon;Cho, WonChul
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.782-786
    • /
    • 2014
  • Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FE-SEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.

Effect of First-Stage Growth Manipulation and Polarity of SiC Substrates on AlN Epilayers Grown Using Plasma-Assisted Molecular Beam Epitaxy

  • Le, Duy Duc;Kim, Dong Yeob;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.266-270
    • /
    • 2014
  • Aluminum nitride(AlN) films were grown on the C-face and on the Si-face of (0001) silicon carbide(SiC) substrates using plasma-assisted molecular-beam epitaxy(PA-MBE). This study was focused on first-stage growth manipulation prior to the start of AlN growth. Al pre-exposure, N-plasma pre-exposure, and simultaneous exposure(Al and N-plasma) procedures were used in the investigation. In addition, substrate polarity and, first-stage growth manipulation strongly affected the growth and properties of the AlN films. Al pre-exposure on the C-face and on the Si-face of SiC substrates prior to initiation of the AlN growth resulted in the formation of hexagonal hillocks on the surface. However, crack formation was observed on the C-face of SiC substrates without Al pre-exposure. X-ray rocking-curve measurements revealed that the AlN epilayers grown on the Si-face of the SiC showed relatively lower tilt and twist mosaic than did the epilayers grown on the C-face of the SiC. The results from the investigations reported in this paper indicate that the growth conditions on the Si-face of the SiC without Al pre-exposure was highly preferred to obtain the overall high-quality AlN epilayers formed using PA-MBE.

Effects of Sintering Additives on the Thermal and Mechanical Properties of AlN by Pressureless Sintering (상압소결 질화알루미늄의 소결 첨가제 변화에 따른 열적 및 기계적 특성)

  • Hwang, Jin Uk;Mun, So Youn;Nam, Sang Yong;Dow, Hwan Soo
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives $Y_2O_3$ and $Sm_2O_3$ on the thermal and mechanical properties of AlN samples pressureless sintered at $1850^{\circ}C$ in an $N_2$ atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the $Y_2O_3$ content increased than the $Sm_2O_3$ additive, whereas all AlN samples exhibited higher mechanical properties as $Sm_2O_3$ content increased. The formation of secondary phases by reaction of $Y_2O_3$, $Sm_2O_3$ with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

A TEM Study on Growth Characteristics of GaN on Si(111) Substrate using MOCVD (Si(111) 기판 위에 MOCVD 법으로 성장시킨 GaN의 성장 특성에 관한 TEM 분석)

  • 신희연;정성훈;유지범;서수정;양철웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • The difference in lattice parameter and thermal expansion coefficient between GaN and Si which results in many defects into the grown GaN is larger than that between GaN and sapphire. In order to obtain high quality GaN films on Si substrate, it is essential to understand growth characteristics of GaN. In this study, GaN layers were grown on Si(111) substrates by MOCVD at three different GaN growth temperatures ($900^{\circ}C$, $1,000^{\circ}C$ and $1,100^{\circ}C$), using AlN and LT-GaN buffer layers. Using TEM, we carried out the comparative investigation of growth characteristics of GaN by characterizing lattice coherency, crystallinity, orientation relationship and defects formed (transition region, stacking fault, dislocation, etc). The localized region with high defect density was formed due to the lattice mismatch between AlN buffer layer and GaN. As the growth temperature of GaN increases, the defect density and surface roughness of GaN are decreased. In the case of GaN grown at $1,100^{\circ}$, growth thickness is decreased, and columns with out-plane misorientation are formed.

A Study on the Zeta Potential Measurement and the Stability Analysis of Nano Fluids using a Particle Image Processing System (입자 영상 처리 시스템을 이용한 콜로이드 입자의 제타포텐셜 측정 및 나노유체 분산 특성 연구)

  • Lee, J.K.;Kim, S.C.;Kim, H.J.;Lee, C.G.;Ju, C.H.;Lee, L.C.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Zeta potential measurements of colloid particles suspended in a liquid are performed by a Zeta Meter developed. There are many applications of colloid stability in spray technology, paints, wastewater treatment, and pharmaceuticalse. Zeta potentials of charged particles are obtained by measuring the electrophoretic velocities of the particles using video enhanced microscopy and image analysis program. The values of zeta potential of polystyrene latex(PSL), $silica(SiO_2)$M, polyvinylidence difluoride(PVDF), silicon nitride, and alumina particles in deionized (DI) water were measured to be -40.5, -31.9, -25.2, -15.1 and -10.1mV, respectively. The particles having high zeta potential less than -20 mV are stable in DI water, because the double layers of them have strong repulsive forces mutually, and the particles having low zeta potential over -20mV are unstable due to Van Der Waals forces. Silica(>20nm), PSL, aluminum and PVDF particles were found to be stable that would remain separate and well disperse, while silicon nitride and alumina particles were found to be unstable that would gradually agglomerate in DI water.

  • PDF

Fabrication of metal structure using AI sacrificial layer (알루미늄 희생층을 이용한 금속 구조물의 제작)

  • Kim, Jung-Mu;Park, Jae-Hyoung;Lee, Sang-Ho;Sin, Dong-Sik;Kim, Yong-Kweon;Lee, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1893-1895
    • /
    • 2001
  • In this paper, novel release technique using wet etch is proposed. The results of this technique and the results of SAMs (Self-Assembled monolayers) coated after release using this technique are compared. Fabricated structure have 100 um in width and experimental length is from 100 um to 1 mm. Thickness of aluminum sacrificial layer is 2 um and structure thickness is 2.5 um. Cantilevers and bridges are fabricated with electroplated gold and silicon nitride deposited on substrate. An aluminium sacrificial layer was evaporated thermally and removed in various wet etching solutions. Detachment length of cantilever is 200 um and detachment length of bridge is 1 mm after isooctane rinsing. And the SAMs coating condition which is appropriate for gold and nitride are studied respectively.

  • PDF

Effect of AlN Addition on the Thermal Conductivity of Sintered $Al_2O_3$ (알루미나 소결체의 열전도도에 대한 AlN의 첨가효과)

  • 김영우;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.285-292
    • /
    • 1996
  • The effect of AlN on the thermal conductivity of aluminum oxide pressurelessly sintered at nitrogen atmos-phere was investigated. Increasing aluminium nitride content up to 1~10 mol% the thermal conductivity of $Al_{2}O_{3}$-AlN system was singnificantly decreased and was constant with adding 20 and 25 mol% aluminium nitride. The thermal conuctivity of $Al_{2}O_{3}$ containing 1~10 mol% the thermal conductivity of $Al_{2}O_{3}$-AlN system was singificantly decreased and was constant with adding 20 and 25mol% aluminum nitride. The thermal conctivity of $Al_{2}O_{3}$ containing 1~10 mol% AlN showed a maximum at $1700^{\circ}C$ and decrea-sed with increasing sintering tempertures. This phenomenon was attributed to $\alpha$-$Al_{2}O_{3}$ and ALON formed by reacting $Al_{2}O_{3}$ with AlN up to $1700^{\circ}C$ and the secondary phases such as ${\gamma}$-ALON ($9Al_{2}O_{3}$.AlN)and $\Phi$($5Al_{2}O_{3}$.AlN) phase above $1750^{\circ}C$ The thermal conductivity of $Al_{2}O_{3}$ containing 20 and 25 mol% AlN showed maximum value at $1800^{\circ}C$ Both $\alpha$-$Al_{2}O_{3}$ and ALON existed up to $1600^{\circ}C$ value at $1800^{\circ}C$ Both $\alpha$-$Al_{2}O_{3}$ and ALON existed up to $1600^{\circ}C$ while only AlON phase existed above $1650^{\circ}C$.

  • PDF