DOI QR코드

DOI QR Code

Kinetic Study of Synthesis of Aluminum Nitride Using Carbon Reduction and Subsequent Nitridation Method

탄소환원질화법에 의한 AlN 합성의 속도론적 연구

  • Received : 2017.04.10
  • Accepted : 2017.05.16
  • Published : 2017.06.30

Abstract

AlN powder was prepared by carbon reduction and subsequent nitridation method through lab- scale experiments. AlN powder was synthesized using the mixture of high purity $Al_2O_3$ powder and carbon black at $1,600{\sim}1,700^{\circ}C$ for 0.5~6 hours under nitrogen atmosphere (flow rate of nitrogen gas: $4.7{\times}10^{-6}{\sim}20{\times}10^{-6}m^3/sec$) with variation of charged height of the mixture powder. Experimental results showed that size of the synthesized particles grows with increasing of temperature. The reaction activation energy was calculated as 382 kJ/mol at the temperature range, and it was considered that chemical reaction is the rate determining step. Content of oxygen and nitrogen of the prpared samples were 0.71~0.96 wt% and 30.7~35.1 wt%. The results was similar with those of the commercial AlN product.

탄소환원질화법을 이용하여 질화알루미늄(Aluminum Nitride: AlN)을 제조하는 연구를 실험실 규모로 수행하였다. 고품위 알루미나 분말과 탄소(carbon black)를 배합하여 흑연 도가니에 장입하고, 노내 분위기를 진공으로 한 다음 질소 가스를 흘려주어 온도($1,600{\sim}1,700^{\circ}C$), 시간(0.5~6 hr), $N_2$유량($4.7{\times}10^{-6}{\sim}20{\times}10^{-6}m^3/sec$), 장입 시료층 높이(0.5~20 mm)를 변화시키면서 AlN을 합성하였다. 실험결과, 고순도 알루미나와 탄소 혼합물을 질소 분위기의 $1600{\sim}1700^{\circ}C$ 온도 범위에서 반응시킬 때 반응 온도가 높을수록 생성된 AlN의 1차 입자 크기가 커지고, 반응 활성화 에너지는 382 kJ/mol로 화학 반응이 율속 단계로 판단되었다. 시험 제조한 AlN들의 산소 함량은 0.71~0.96 wt%였고, 질소는 30.7~35.1 wt%로서 상용 제품과 근접한 결과를 나타내었다.

Keywords

References

  1. H. S. Roh, 2014 : Aluminum Nitride (AlN) Powde", KISTI MARKET REPORT, 4, 15-18.
  2. M. Ish-Shalom, 1982 : Formation of Aluminum Oxynitride by Carbothermal Reduction of Alumina in Nitrogen, J. Mater. Sci. Lett., 1, 147-149. https://doi.org/10.1007/BF00730944
  3. S. Hirai, T. Miwa, T Iwata, and H. Katayama, 1989 : Formation of Aluminum Nitride by Carbothermic Reduction of Alumina in a Flowing Nitrogen Atmosphere, Nipon Kinzoku Gakaishi, 53, 1035-1040.
  4. P. Lefort, F. Marty, G. Ado, and M. Billy, 1985 : Sur la Formation du Niture d'Aluminium a Partir d'Alumine en Presesece de Carbon, Rev. Chim. Miner., 22, 534-545.
  5. P. Lefort and M. Billy, 1993 : Mechanism of AlN Formation through the Carbothermal Reduction $Al_2O_3$ in a Flowing $N_2$ Atmosphere, J. Am. Ceram. Soc., 76, 2295-2299. https://doi.org/10.1111/j.1151-2916.1993.tb07767.x
  6. N. Kuramoto and H. Taniguchi, 1986 : Fine Powder of Aluminum Nitride, Compositon and Sintered Body thereof and Process for their Production, United States Patent 4618592.
  7. H. K. Park et al., 2016 : A Scale-Up Test for Preparation of AlN by Carbon Reduction and Subsequent Nitridation Method, Journal of the Korean Institute of Resources Recycling, 25(5), 75-83. https://doi.org/10.7844/kirr.2016.25.5.75
  8. A. W. Weimer, G. A. Cochran, J. P. Henley, and G. A. Eisman, 1993 : Process for Preparing Ultrafine Aluminum Nitride Powder, United States Patent 5219804.
  9. M. Wang, N. Wu, M. Tasi, and H. Liu, 2000 : Preparation and Chracterization of AlN Powders in the $ AlCl_3-NH_3-N_2$ System, Journal of Crystal Growth, 216, 69-79. https://doi.org/10.1016/S0022-0248(00)00377-8
  10. T. Muneoka and K. Watanabe, 2015: Aluminum Nitride Powder and Method of Producing the Same, United States Patent 9056774.
  11. T. Muneoka and K. Watanabe, 2015: Method of Producing a Spherical Aluminum Nitride Powder, United States Patent 9090469.
  12. K. Watanabe and T. Yoneda, 2015: Process for Producing Spherical Aluminum Nitride Powder and Spherical Aluminum Nitride Powder Produced by the Same Process, United States Patent 9199848.