DOI QR코드

DOI QR Code

Effects of Sintering Additives on the Thermal and Mechanical Properties of AlN by Pressureless Sintering

상압소결 질화알루미늄의 소결 첨가제 변화에 따른 열적 및 기계적 특성

  • Hwang, Jin Uk (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Mun, So Youn (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nam, Sang Yong (Functional nano lab. Department of polymer engineering, Gyeongsang National University) ;
  • Dow, Hwan Soo (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology)
  • Received : 2019.10.07
  • Accepted : 2019.10.21
  • Published : 2019.10.28

Abstract

Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives $Y_2O_3$ and $Sm_2O_3$ on the thermal and mechanical properties of AlN samples pressureless sintered at $1850^{\circ}C$ in an $N_2$ atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the $Y_2O_3$ content increased than the $Sm_2O_3$ additive, whereas all AlN samples exhibited higher mechanical properties as $Sm_2O_3$ content increased. The formation of secondary phases by reaction of $Y_2O_3$, $Sm_2O_3$ with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.

Keywords

References

  1. H. M. Lee, K. Bharathi and D. K. Kim: Adv. Eng. Mater., 16 (2014) 655. https://doi.org/10.1002/adem.201400078
  2. P. Rutkowski, D. Kata, K. Jankowski and W. Piekarczyk: J. Therm. Anal. Calorim., 124 (2016) 93. https://doi.org/10.1007/s10973-015-5091-1
  3. C. Duquenne, M. P. Besland, P. Y. Tessier, E. Gautron, Y. Scudeller and D. Averty: J. Phys. D: Appl. Phys., 45 (2012) 015301. https://doi.org/10.1088/0022-3727/45/1/015301
  4. Y. Baik and R. A. Drew: Key Eng. Mater., 122 (1996) 553. https://doi.org/10.4028/www.scientific.net/KEM.122-124.553
  5. L. M. Sheppard: Am. Ceram. Soc. Bull., 69 (1990) 1801.
  6. G. A. Slack: J. Phys. Chem. Solids, 34 (1973) 321. https://doi.org/10.1016/0022-3697(73)90092-9
  7. K. Komeya, H. Inoue and A. Tsuge: J. Jpn. Ceram. Soc, 108 (2000) S93. https://doi.org/10.2109/jcersj.108.1262_S93
  8. K. Komeya, H. Hiroshi and A. Tsuge: J. Ceram. Soc. Japan, 89 (1981) 330.
  9. K. Komeya, H. Inoue and A. Tsuge: J. Am. Ceram. Soc., 57 (1974) 411. https://doi.org/10.1111/j.1151-2916.1974.tb11428.x
  10. K. A. Khor, L. G. Yu and Y. Murakoshi: J. Eur. Ceram. Soc., 25 (2005) 1057. https://doi.org/10.1016/j.jeurceramsoc.2003.12.020
  11. L. Qiao, H. Zhou, H. Xue and S. Wang: J. Eur. Ceram. Soc., 23 (2003) 61. https://doi.org/10.1016/S0955-2219(02)00079-1
  12. G. Pezzotti, A. Nakahira and M. Tahjika: J. Eur. Ceram. Soc., 20 (2000) 1319. https://doi.org/10.1016/S0955-2219(99)00286-1
  13. K. Watari, M. Kawamoto and K. Ishizaki: J. Mater. Sci., 26 (1991) 4727. https://doi.org/10.1007/BF00612411
  14. X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang and X. Fu: Mater. Sci. Eng., A, 342 (2003) 104. https://doi.org/10.1016/S0921-5093(02)00254-X
  15. Terry. M. Tritt: Thermal Conductivity: Theory, Properties, and Applications, Terry. M. Tritt (Ed.), Plenum Publishers, New York (2012) 239.
  16. G. Pezzotti, A. Nakahira and M. Tahjika: J. Eur. Ceram. Soc., 20 (2000) 1319. https://doi.org/10.1016/S0955-2219(99)00286-1
  17. R. Terao, J. Tatami, T. Meguro and K. Komeya: J. Eur. Ceram. Soc., 22 (2002) 1051. https://doi.org/10.1016/S0955-2219(01)00422-8
  18. H. Abe, K. Sato, M. Naito, K. Nori, T. Hotta, J. Tatami and K. Komeya: Powder Technology, 159 (2005) 155. https://doi.org/10.1016/j.powtec.2005.08.004
  19. A. V. Vickar, T. B. Jackson and R. A. Cutler: J. Am. Ceram. Soc., 72 (1989) 2031. https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  20. T. B. Jackson, A. V. Vickar, K. L. More, R. B. Dinwideie and R. A. Cutler: J. Am. Ceram. Soc., 80 (1997) 1421. https://doi.org/10.1111/j.1151-2916.1997.tb03000.x