Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.6.782

Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process  

Hwang, Yongseon (School of Chemical Engineering & Materials Science, Chung-Ang University)
Kim, Jooheon (School of Chemical Engineering & Materials Science, Chung-Ang University)
Cho, WonChul (School of Civil and Environmental Engineering, Urban Design and Studies, Chung-Ang University)
Publication Information
Polymer(Korea) / v.38, no.6, 2014 , pp. 782-786 More about this Journal
Abstract
Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FE-SEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.
Keywords
ceramic particles; thermally conductive composites; wetting process; silicon carbide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Lin, K. S. Moon, and C. P. Wong, Adv. Mater., 21, 2421 (2009).   DOI   ScienceOn
2 Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, and M. Lisunova, Compos. Sci. Technol., 68, 1981 (2008).   DOI   ScienceOn
3 A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Phys. Chem. C, 111, 7565 (2007).   DOI   ScienceOn
4 Z. Shi, M. Radwan, S. Kirihara, Y. Miyamoto, and Z. Jin, Appl. Phys. Lett., 95, 224104 (2009).   DOI
5 S. V. Garimella, A. S. Fleischer, J. Y. Murthy, A. Keshavarzi, R. Prasher, and C. Patel, IEEE Trans. Compon. Packag. Technol., 31, 801 (2008).   DOI
6 R. Prasher, Proc. IEEE, 94, 1571 (2006).   DOI   ScienceOn
7 F. Sarvar, D. C. Whalley, D. A. Hutt, P. J. Palmer, and N. J. Teh, Microelectron. Int., 24, 66 (2007).   DOI
8 T. L. Li and S. L. C. Hsu, J. Phys. Chem. B, 114, 6825 (2010).   DOI
9 C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg, Adv. Funct. Mater., 19, 1857 (2009).   DOI   ScienceOn
10 F. Yang, X. Zhao, and P. Xiao, J. Eur. Ceram. Soc., 30, 3111 (2010).   DOI
11 W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, Mater. Res. Bull., 42, 1863 (2007).   DOI   ScienceOn
12 T. Zhou, X. Wang, G. U. Mingyuan, and X. Liu, Polymer, 49, 4666 (2008).   DOI   ScienceOn
13 S. Vyazovkin and N. Sbirrazzuoli, Macromol. Chem. Phys., 201, 199 (2000).   DOI
14 T. Terao, C. Zhi, Y. Bando, M. Mitome, C. Tang, and D. Golberg, J. Phys. Chem. C, 114, 4340 (2010).