Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.5.395

Effects of Sintering Additives on the Thermal and Mechanical Properties of AlN by Pressureless Sintering  

Hwang, Jin Uk (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology)
Mun, So Youn (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology)
Nam, Sang Yong (Functional nano lab. Department of polymer engineering, Gyeongsang National University)
Dow, Hwan Soo (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of Powder Materials / v.26, no.5, 2019 , pp. 395-404 More about this Journal
Abstract
Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives $Y_2O_3$ and $Sm_2O_3$ on the thermal and mechanical properties of AlN samples pressureless sintered at $1850^{\circ}C$ in an $N_2$ atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the $Y_2O_3$ content increased than the $Sm_2O_3$ additive, whereas all AlN samples exhibited higher mechanical properties as $Sm_2O_3$ content increased. The formation of secondary phases by reaction of $Y_2O_3$, $Sm_2O_3$ with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.
Keywords
Aluminum nitride; Pressureless sintering; Thermal conductivity; Mechanical properties; Secondary phase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. M. Lee, K. Bharathi and D. K. Kim: Adv. Eng. Mater., 16 (2014) 655.   DOI
2 P. Rutkowski, D. Kata, K. Jankowski and W. Piekarczyk: J. Therm. Anal. Calorim., 124 (2016) 93.   DOI
3 C. Duquenne, M. P. Besland, P. Y. Tessier, E. Gautron, Y. Scudeller and D. Averty: J. Phys. D: Appl. Phys., 45 (2012) 015301.   DOI
4 Y. Baik and R. A. Drew: Key Eng. Mater., 122 (1996) 553.   DOI
5 L. M. Sheppard: Am. Ceram. Soc. Bull., 69 (1990) 1801.
6 G. A. Slack: J. Phys. Chem. Solids, 34 (1973) 321.   DOI
7 K. Komeya, H. Inoue and A. Tsuge: J. Jpn. Ceram. Soc, 108 (2000) S93.   DOI
8 K. Komeya, H. Hiroshi and A. Tsuge: J. Ceram. Soc. Japan, 89 (1981) 330.
9 K. Komeya, H. Inoue and A. Tsuge: J. Am. Ceram. Soc., 57 (1974) 411.   DOI
10 K. A. Khor, L. G. Yu and Y. Murakoshi: J. Eur. Ceram. Soc., 25 (2005) 1057.   DOI
11 L. Qiao, H. Zhou, H. Xue and S. Wang: J. Eur. Ceram. Soc., 23 (2003) 61.   DOI
12 G. Pezzotti, A. Nakahira and M. Tahjika: J. Eur. Ceram. Soc., 20 (2000) 1319.   DOI
13 K. Watari, M. Kawamoto and K. Ishizaki: J. Mater. Sci., 26 (1991) 4727.   DOI
14 X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang and X. Fu: Mater. Sci. Eng., A, 342 (2003) 104.   DOI
15 Terry. M. Tritt: Thermal Conductivity: Theory, Properties, and Applications, Terry. M. Tritt (Ed.), Plenum Publishers, New York (2012) 239.
16 G. Pezzotti, A. Nakahira and M. Tahjika: J. Eur. Ceram. Soc., 20 (2000) 1319.   DOI
17 R. Terao, J. Tatami, T. Meguro and K. Komeya: J. Eur. Ceram. Soc., 22 (2002) 1051.   DOI
18 H. Abe, K. Sato, M. Naito, K. Nori, T. Hotta, J. Tatami and K. Komeya: Powder Technology, 159 (2005) 155.   DOI
19 A. V. Vickar, T. B. Jackson and R. A. Cutler: J. Am. Ceram. Soc., 72 (1989) 2031.   DOI
20 T. B. Jackson, A. V. Vickar, K. L. More, R. B. Dinwideie and R. A. Cutler: J. Am. Ceram. Soc., 80 (1997) 1421.   DOI