A TEM Study on Growth Characteristics of GaN on Si(111) Substrate using MOCVD

Si(111) 기판 위에 MOCVD 법으로 성장시킨 GaN의 성장 특성에 관한 TEM 분석

  • 신희연 (성균관대학교 금속ㆍ재료공학부) ;
  • 정성훈 (성균관대학교 금속ㆍ재료공학부) ;
  • 유지범 (성균관대학교 금속ㆍ재료공학부) ;
  • 서수정 (성균관대학교 금속ㆍ재료공학부) ;
  • 양철웅 (성균관대학교 금속ㆍ재료공학부)
  • Published : 2003.04.01

Abstract

The difference in lattice parameter and thermal expansion coefficient between GaN and Si which results in many defects into the grown GaN is larger than that between GaN and sapphire. In order to obtain high quality GaN films on Si substrate, it is essential to understand growth characteristics of GaN. In this study, GaN layers were grown on Si(111) substrates by MOCVD at three different GaN growth temperatures ($900^{\circ}C$, $1,000^{\circ}C$ and $1,100^{\circ}C$), using AlN and LT-GaN buffer layers. Using TEM, we carried out the comparative investigation of growth characteristics of GaN by characterizing lattice coherency, crystallinity, orientation relationship and defects formed (transition region, stacking fault, dislocation, etc). The localized region with high defect density was formed due to the lattice mismatch between AlN buffer layer and GaN. As the growth temperature of GaN increases, the defect density and surface roughness of GaN are decreased. In the case of GaN grown at $1,100^{\circ}$, growth thickness is decreased, and columns with out-plane misorientation are formed.

Keywords

References

  1. F.A. Ponce, D.P. Bour, Nature, 386 (1997) 27 https://doi.org/10.1038/386027a0
  2. S.T. Kim, Electrcnic Materials, 13-1 (2000)19
  3. S.T. Kim, S.H. Chung, D.C. Moon, J. Korean Phys. Soc., 33 (1998) 6
  4. I. Akasaki, J. Crystal Growth, 221 (2000) 231 https://doi.org/10.1016/S0022-0248(00)00691-6
  5. T. Ueda, T.F. Huang, S. Spruytte, H. Lee, J.Crystal Growth, 187 (1998) 340 https://doi.org/10.1016/S0022-0248(97)00886-5
  6. J.W. Lee, J.B. Yoo, H.G. Wang, J. KoreanPhys. Soc., 1 (1997) 5
  7. K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, J. Crystal Growth, 115 (1991) 628 https://doi.org/10.1016/0022-0248(91)90816-N
  8. H. Marchand, N. Zhao, Y. Golan, S.J. Rosner, MRS Internet J. Nitride Semicond. Res. 4(1999) 2 https://doi.org/10.1557/S1092578300000582
  9. H.M. Liaw, R. Doyle, P.L. Fejes, S. Zollner, A.Konkar, K. J. Linthicum, T. Gehrke, R. F. Davis, Solid State Electronics, 44 (2000) 747 https://doi.org/10.1016/S0038-1101(99)00307-X
  10. U. Rossner, A. Barski, J.L. Rouviere, A. Bourret, Materials Science and Eng, B29 (1995)74
  11. H.K. Cho, J.Y. Lee, K.S. Kim, J. Korean Phys.Soc., 39 (2001) 4
  12. J.W. Lee, S.H. Jung, H.Y. Shin, C.W. Yang, JB. Yoo, J. Crystal Growth, 237 (2002) 1094 https://doi.org/10.1016/S0022-0248(01)02097-8
  13. H.Y. Shin, J.W. Lee, S.H. Jung, J.B. Yoo, C.W.Yang, J. Korean Vac. Soc., 11 (2002) 50
  14. X.H. Wu, P. Fini, E.J. Tarsa, B. Heying, J.Crystal Growth, 189 (1998) 231 https://doi.org/10.1016/S0022-0248(98)00240-1
  15. C.M. Sung, Transmission electron microscopy, Bando publishing Co., (1992) 155