• 제목/요약/키워드: alternating method

검색결과 432건 처리시간 0.028초

구강내에서 임플랜트 지대주 형성 시 내부연결방식과 외부연결방식간의 열전달 효과 비교 (THE COMPARATIVE STUDY OF THERMAL INDUCTIVE EFFECT BETWEEN INTERNAL CONNECTION AND EXTERNAL CONNECTION IMPLANT IN ABUTMENT PREPARATION)

  • 허중보;고석민
    • 대한치과보철학회지
    • /
    • 제45권1호
    • /
    • pp.60-70
    • /
    • 2007
  • Statement of problem: The cement-type abutment would be needed for the reduction of its body in order to correct the axis and to assure occlusal clearance. In the case of intraoral preparation, there is a potential risk that generated heat could be transmitted into the bone-implant interface, where it can cause deterioration of tissues around the implant and failed osseointegration. Purpose: The purpose of this study was to assess the difference of the heat transmitting effect on external and internal connection implant types under various conditions. Material and method: For evaluating the effects of alternating temperature, the thermocoupling wires were attached on 3 areas of the implant fixture surface corresponding to the cervical, middle, and apex. The abutments were removed 1mm in depth horizontally with diamond burs and were polished for 30 seconds at low speed with silicone points using pressure as applied in routine clinical practice. Obtained data were analyzed using Mann-Whitney rank-sum test and Wilcoxon / Kruskal-Wallis Tests. Result: Increased temperature on bone-implant interface was evident without air-water spray coolant both at high speed reduction and low speed polishing (p<.05). But, the difference between connection types was not shown. Conclusion: The reduction procedure of abutment without using proper coolant leads to serious damage of oral tissues around the implant irrespective of external and internal connection type.

SM45C 환봉 용접재의 피로거동에 관한 실험적 연구 (An Experimental Study on Fatigue Behavior in Welded SM45C Steel Rod)

  • 이용복;정재근
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.519-525
    • /
    • 2008
  • For this study, SM45C steel rods using generally for power transmission shafts and machine components was selected and welded by butt-GMAW method. And then it was studied about estimation of fatigue strength and the region of infinite life by Haigh diagram using Goodman's equation. Fatigue strength in weld zone presents highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. This result agrees with distribution of hardness in weld zone. Fatigue strength in base metal zone presents highly compared with weld zone in low cycles between $10^4$ cycles and $10^6$cycles, but it presents the lowest fatigue strength on the order of heat affected zone in the vicinity of $10^6$cycles. It is the result that the first high compressive residual stress distributed by drawing process of the steel rods is released and the base metal is softened by alternating stresses. The region of infinite life by Haigh diagram presents highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. From this results, it is demanded that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected in the region of the lowest infinite life of heat affected zone.

온간단조금형의 수명연장에 관한 연구 (A Research on Lengthening the Life of Warm Forging Die)

  • 김세환
    • 한국산학기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.49-54
    • /
    • 2010
  • 자동차의 A.C 제너레이터(alternating current generator) 부품으로 사용되는 로터폴(rotor pole)을 가공할 때는 트랜스퍼온간단조금형(transfer warm forging die)으로 성형한다. 소재를 온간가공 영역으로 가열한 후 즉시 금형안으로 이송시켜 제1스테이지(1st stage)에서 업세팅가공(upsetting work)하고 제2스테이지(2nd stage)로 이송하여 측방압출(lateral extrusion)가공을 한다. 이때 측방압출 스테이지의 금형에서 다이블록(die block), 다이부싱(die bushing), 센터펀치(center punch), 사이드펀치(side punch)의 접촉면이 압출시의 과혹(過酷)한 조건에 견디지 못하여 쉽게 마멸(abrasion)되어 금형수명(die life)을 단축시키고 있다. 이 때문에 생산량 감소로 인한 납기지연, 금형의 수리보수시간 과다, 제품의 정밀도 저하 등의 문제점이 발생되고 있다. 이러한 문제점을 해결하기 위하여 금형재질 선정과 열처리 작업 싸이클 개선, 방전가공시의 트러블 해소, 핵심부품의 구조변경 등을 연구하여 금형수명을 40~50% 연장 하고자 하였다.

비복근 위축 토끼 모델에서 직류 및 교류 미세전류의 근육 재생 효과 비교 (Comparison of Regeneration Effects of Direct and Alternating Microcurrent Therapy on Atrophied Calf Muscle in a Rabbit)

  • 김동한;권동락;문용석
    • Clinical Pain
    • /
    • 제19권2호
    • /
    • pp.80-89
    • /
    • 2020
  • Objective: We compared the regenerative effects of microcurrent therapy (MT) according to the type of electric current, which were direct current microcurrent therapy (DCMT) and alternating current microcurrent therapy (ACMT) on atrophied calf muscle in cast-immobilized rabbit. Method: Rabbits were allocated into control group (sham MT), ACMT group, and DCMT group. Before starting treatment, right gastrocnemius (GCM) muscle was immobilized by cast for 2 weeks. Compound muscle action potential of tibial nerve in nerve conduction study, circumference of calf muscle using a ruler, and thickness of medial and lateral GCM muscle measured by ultrasound, cross sectional area (CSA), and proliferating cell nuclear antigen (PCNA) ratios (%) of muscle fibers were measured on the immunohistochemical analysis. Results: The mean atrophic changes (%) in right medial and lateral GCM muscle thickness, right calf circumference, and amplitude of CMAP of the right tibial nerve in ACMT group and DCMT group were significantly lower than those in control group, respectively (p<0.05). The mean CSA (μm2) of type I and type II and PCNA ratios (%) of medial and lateral GCM muscle fibers in ACMT group and DCMT group were significantly greater than those in control group, respectively (p<0.05). There were no significant differences between the ACMT group and DCMT group at all parameters. Conclusion: This study demonstrated that ACMT and DCMT showed better regeneration effect than sham MT. Microcurrent may be effective in regeneration of atrophied muscle regardless of the type of current.

Performance Improvement of 24X40 Gbps NRZ Channels in WDM System with 1,000 km NZ-DSF using Optimal Parameters of Optical Phase Conjugator

  • Lee, Seong-Real;Chung, Jae-Pil
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.164-170
    • /
    • 2007
  • In this paper, the new method alternating with the method for forming the symmetrical distribution of power and local dispersion in high bit-rate WDM system with optical phase conjugator (OPC) is proposed. The proposed method is carried by finding out the optimal values of OPC position offset and fiber dispersion offset. It is assumed to be that NRZ-formatted 24-channels of 40 Gbps are simultaneously propagated in WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1,000 km. It is confirmed that the compensation extents of overall WDM channels are more improved by applying the induced optimal values into WDM system than those in WDM system with the conventional mid-span spectral inversion (MSSI) technique, and the searching procedure of the optimal values makes little difference of performance if the optimal value of one parameter related with another parameter. And, it is confirmed that the flexible design of WDM system with OPC is possible by effectiviely using by these optimal values. Thus, it is expected that the proposed method alternate with the forming method of the symmetrical distributions of power and local dispersion.

이차원과도열전도에 대한 음함수형 유한차분법의 정도에 미치는 공간증분 및 시간간격의 영향 (Effects of Space Increment and Time Step to the Accuracy of the Implicit Finite Difference Method in a Two-Dimensional Transient Heat Conduction Problem)

  • 조권옥;이용성;오후규
    • 한국수산과학회지
    • /
    • 제18권1호
    • /
    • pp.15-22
    • /
    • 1985
  • The study on computation time, accuracy, and convergency characteristic of the implicit finite difference method is presented with the variation of the space increment and time step in a two-dimensional transient heat conduction problem with a dirichlet boundary condition. Numerical analysis were conducted by the model having the conditions of the solution domain from 0 to 3m, thermal diffusivity of 1.26 $m^2/h$, initial condition of 272 K, and boundary condition of 255.4 K. The results obtained are summarized as follows : 1) The degree of influence with respect to the accuracy of the time step and space increment in the alternating-direction implicit method and Crank-Nicholson implicit method were relatively small, but in case of the fully implicit method showed opposite tendency. 2) To prescribe near the zero for the space increment and tine step in a two dimensional transient problem were good in a accuracy aspect but unreasonable in a computational time aspect. 3) The reasonable condition of the space increment and the time step considering accuracy and computation time could be generalized with the Fourier modulus increment, F, ana dimensionless space increment, X, irrespective of the solution domain.

  • PDF

임의 형태의 삼차원 균열 모델링 및 해석 (Modeling and Analysis of Arbitrarily Shaped Three-Dimensional Cracks)

  • 박재학
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1091-1097
    • /
    • 2011
  • SGBEM-FEM 교호법은 유한 물체 내에 존재하는 삼차원 균열을 해석하는 유용한 방법으로 알려져 있다. 이 방법으로 일반적인 평면 혹은 비평면 삼차원 균열에 대한 정확한 응력강도계수를 구할 수 있다. 기존의 방법에서는 균열을 모델화 하는데 8 절점 사각형 경계요소를 사용한다. 그러나 임의 형상의 균열의 경우는 3 절점 삼각형 요소를 사용하여 균열을 모델화 하는 것이 더 편리하다. 따라서 본 논문에서는 3 절점 삼각형 요소와 7 절점 사각형 요소를 사용하여 전진 프런트 법으로 균열을 모델링 하였다. 사용된 균열 모델의 정확성을 검토하기 위하여 몇 가지 형상의 균열에 대하여 응력강도계수를 구하여 기존의 해와 비교하였다.

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

ALTERNATED INERTIAL RELAXED TSENG METHOD FOR SOLVING FIXED POINT AND QUASI-MONOTONE VARIATIONAL INEQUALITY PROBLEMS

  • A. E. Ofem;A. A. Mebawondu;C. Agbonkhese;G. C. Ugwunnadi;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.131-164
    • /
    • 2024
  • In this research, we study a modified relaxed Tseng method with a single projection approach for solving common solution to a fixed point problem involving finite family of τ-demimetric operators and a quasi-monotone variational inequalities in real Hilbert spaces with alternating inertial extrapolation steps and adaptive non-monotonic step sizes. Under some appropriate conditions that are imposed on the parameters, the weak and linear convergence results of the proposed iterative scheme are established. Furthermore, we present some numerical examples and application of our proposed methods in comparison with other existing iterative methods. In order to show the practical applicability of our method to real word problems, we show that our algorithm has better restoration efficiency than many well known methods in image restoration problem. Our proposed iterative method generalizes and extends many existing methods in the literature.