Performance Improvement of 24X40 Gbps NRZ Channels in WDM System with 1,000 km NZ-DSF using Optimal Parameters of Optical Phase Conjugator

  • Lee, Seong-Real (Division of Marine Electronic and Communication Eng., Mokpo National Maritime University) ;
  • Chung, Jae-Pil (Department of Information Technology Eng., Gachon University of Medicine and Science)
  • Published : 2007.06.30

Abstract

In this paper, the new method alternating with the method for forming the symmetrical distribution of power and local dispersion in high bit-rate WDM system with optical phase conjugator (OPC) is proposed. The proposed method is carried by finding out the optimal values of OPC position offset and fiber dispersion offset. It is assumed to be that NRZ-formatted 24-channels of 40 Gbps are simultaneously propagated in WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1,000 km. It is confirmed that the compensation extents of overall WDM channels are more improved by applying the induced optimal values into WDM system than those in WDM system with the conventional mid-span spectral inversion (MSSI) technique, and the searching procedure of the optimal values makes little difference of performance if the optimal value of one parameter related with another parameter. And, it is confirmed that the flexible design of WDM system with OPC is possible by effectiviely using by these optimal values. Thus, it is expected that the proposed method alternate with the forming method of the symmetrical distributions of power and local dispersion.

Keywords

References

  1. A. Mecozzi, C. B. Clausen, and M. Shtaif, 'System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission', IEEE Photon. Technol. Lett., vol. 12, no. 12, pp 1633-1635, 2000 https://doi.org/10.1109/68.896331
  2. J. P. Gorden and L. F. Mollenauer, 'Phase noise in photonic communications system using linear amplifiers', Opt. Lett., vol. 15, pp. 1351-1353, 1990 https://doi.org/10.1364/OL.15.001351
  3. T. L. Koch Alferness, 'Dispersion compensation by active predistorted signal synthesis', J. Lightwave Technol. vol. LT-3, pp. 800-805, 1985
  4. A. H. Gnauck et al., '8-Gb/s-130 km transmission experiment using Er-doped fiber preamplifier and optical dispersion equalization', IEEE Photon. Technol. Lett., vol. 3, pp 1147-1149, 1991 https://doi.org/10.1109/68.118036
  5. N. Takachio, K. Iwashita, K. Nakanishi, and S. Koike, 'Chromatic dispersion equalization in an 8 Gbit/s 202 km optical CPFSK transmission experiment', in Proc. IOOC '89, Kobe. Japan, 1989, Paper 20PDA-13
  6. A. M. Vengsarkar and W. A. Reed, 'Dispersion-compensating single-mode fibers : Efficient designs for first- and second-order compensation', Opt. Lett., vol. 18, pp. 924-926, 1993 https://doi.org/10.1364/OL.18.000924
  7. A. Yariv, D. Fekete, and D. M. Pepper, 'Compensation for channel dispersion by nonlinear optical phase conjugation', Opt. Lett., vol. 4, pp 52-54, 1979 https://doi.org/10.1364/OL.4.000052
  8. D. M. Pepper and A. Yariv, 'Compensation for phase distortions in nonlinear media by phase conjugation', Opt. Lett., vol. 5, pp 59-60, 1979 https://doi.org/10.1364/OL.5.000059
  9. ITU Recommendation 'Characteristics of a nonzero dispersion shifted single-mode optical fibre cable' G.655, 2003
  10. N. Shibata, K. Nosu, K. Iwashita and Y. Azuma, 'Transmission limitations due to fiber nonlinearities in optical FDM systems', IEEE J Select. Areas in Comm., Vol. 8, No. 6, pp. 1068-1077, 1990 https://doi.org/10.1109/49.57810
  11. S. Watanabe, S. Takeda, G. Ishikawa, H. Ooi, J. G. Nielsen and C. Sonne, 'Simultaneous wavelength conversion and optical phase conjugation of 200 Gb/s (5x40 Gb/s) WDM Signal using a highly nonlinear fiber four-wave mixing', ECOC 97 Conf., pp. 1-4, 1997
  12. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2001
  13. S. R. Lee, J. W. Kim, and S. C. Son, 'Effect of cross phase modulation on channel compensation in 320 Gbps Intensity / Direct Detection WDM transmission systems', J. of The Korean Ins. Of Maritime Inform. & Comm. Science, vol. 8, no. 5, pp. 1134-1140, 2004
  14. M. Wu and W. I. way, 'Fiber nonlinearity limitations in ultra-dense WDM systems', J. Lightwave Technol., vol. 22, no. 6, pp. 1483-1498, 2004 https://doi.org/10.1109/JLT.2004.829222
  15. G. P. Agrawal, Fiber-optic communication systems, John Wiley & Sons, Inc., 2002
  16. K. Inoue, 'Four-wave mixing in an optical fiber in the zero-dispersion wavelength region', J. Lightwave Technol, vol. LT-10, no. 11, pp. 1553-1561,1992
  17. S. Watanabe and M. Shirasaki, 'Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation', J. Lightwave Technol., vol. LT-14, no. 3, pp. 243-248, 1996