Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.028

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation  

Yoon, Jooil (Seoul National University)
Lee, Hyun Chul (Pusan National University)
Joo, Han Gyu (Seoul National University)
Kim, Hyeong Seog (KEPCO Nuclear Fuel Co. Ltd.)
Publication Information
Nuclear Engineering and Technology / v.53, no.11, 2021 , pp. 3543-3562 More about this Journal
Abstract
The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.
Keywords
Pin-by-Pin; 2D/1d decoupling; Discontinuity factor; SPH Factor; CMFD; VERA Benchmark; APR1400 benchmark;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T.M. Sutton, B.N. Aviles, Diffusion theory methods for spatial kinetics calculations, Prog. Nucl. Energy 30 (1996) 119-182, https://doi.org/10.1016/0149-1970(95)00082-U.   DOI
2 J.F. Briesmeister, MCNP-A General Monte Carlo N-Particle Transport Code, 2003 (No. LA-UR-03-1987), version 5.
3 J.I. Yoon, H.G. Joo, Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernels, J. Nucl. Sci. Technol. 45 (2008) 668-682, https://doi.org/10.1080/18811248.2008.9711467.   DOI
4 Y. Akio, T. Masahiro, K. Yasunori, Y. Yoshihiro, Improvement of the SPH method for pin-by-pin core calculations, J. Nucl. Sci. Technol. 41 (2004) 1155-1165, https://doi.org/10.1080/18811248.2004.9726344.   DOI
5 K. Smith, An Analytic Nodal Method for Solving the Two-Group, Multidimensional, Static and Transient Neutron Diffusion Equations, MIT, 1979.
6 A. Hebert, A consistent technique for the pin-by-pin homogenization of a pressurized water reactor assembly, Nucl. Sci. Eng. 113 (1993) 227-238, https://doi.org/10.13182/NSE92-10.   DOI
7 H.G. Joo, T.J. Downar, An incomplete domain decomposition preconditioning method for nonlinear nodal kinetics calculations, Nucl. Sci. Eng. 123 (1996) 403-414, https://doi.org/10.13182/NSE96-A24203.   DOI
8 H.J. Shim, B.S. Han, S.J. Jong, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2012) 161-176, https://doi.org/10.5516/NET.01.2012.503.   DOI
9 D. Lee, T.J. Downar, Y. Kim, A nodal and finite difference hybrid method for pin-by-pin heterogeneous three-dimensional Light water reactor diffusion calculations, Nucl. Sci. Eng. 146 (2004) 319-339, https://doi.org/10.13182/NSE04-A2412.   DOI
10 M. Tatsumi, M. Tabuchi, K. Sato, Y. Kodama, Y. Ohoka, H. Nagano, Recent Advancements in AEGIS/SCOPE2 and Its Verifications and Validations, PHYSOR-2006: American Nuclear Society's Topical Meetings on Reactor Physics (2017). https://www.kns.org/files/int_paper/paper/MC2017_2017_9/P363S09-04TatsumiM.pdf.
11 Kaeri, APR1400 reactor core benchmark problem book. https://doi.org/10.1017/CBO9781107415324.004, 2019.   DOI
12 Y. Saad, Iterative Methods for Sparse Linear Systems, 2000.
13 Y.S. Jung, H.G. Joo, Decoupled planar MOC solution for dynamic group constant generation in direct three-dimensional core calculations, Int. Conf. Math. Comput. Methods, React. Phys. (2009) 2157-2167.
14 H. Finnemann, F. Bennewitz, M.R. Wagner, Interface current techniques for multidimensional reactor calculations, Atomkernenergie 30 (1977) 123-128, accessed, https://inis.iaea.org/search/search.aspx?orig_q=RN:9350107. (Accessed 11 January 2021).
15 L.M. Petrie, Keno IV: an improved Monte Carlo criticality program (No. ORNL-4938). https://doi.org/10.2172/4158205, 2005.   DOI
16 P.K. Romano, B. Forget, The OpenMC Monte Carlo particle transport code, Ann. Nucl. Energy 51 (2013) 274-281, https://doi.org/10.1016/J.ANUCENE.2012.06.040.   DOI
17 K. Smith, Nodal method storage reduction by nonlinear iteration, Trans. Am. Nucl. Soc. 44 (1983) 265-266, accessed, https://inis.iaea.org/search/search. aspx?orig_q=RN:15010017. (Accessed 11 January 2021).
18 K. Koebke, A new approach to homogenization and group condensation, in: IAEA Tech. Comm. Meet. Homog. Methods React. Phys., Lugano, Switzerland, 1978.
19 K.S. Smith, Spatial Homogenization Methods for Light Water Reactors, MIT, 1980.
20 J.A. Turner, K. Clarno, M. Sieger, R. Bartlett, B. Collins, R. Pawlowski, R. Schmidt, R. Summers, The virtual environment for reactor Applications (VERA): design and architecture, J. Comput. Phys. 326 (2016) 544-568, https://doi.org/10.1016/J.JCP.2016.09.003.   DOI
21 H.G. Joo, J.Y. Cho, K.S. Kim, C.C. Lee, S.Q. Zee, Methods and performance of a three-dimensional whole-core transport code DeCART, Int. Conf. Phys. React. 2004 (2004) 21-34.
22 K.S. Smith, Multidimensional Nodal Transport Using the Simplified PL Method, Trans. Am. Nucl. Soc., 1986.
23 B. Kochunas, B. Collins, D. Jabaay, T.J. Downar, W.R. Martin, Overview of development and design of MPACT: Michigan parallel characteristics transport code, Int. Conf. Math. Comput. Methods, React. Phys. (2013) 42-53.
24 W. Boyd, S. Shaner, L. Li, B. Forget, K. Smith, The OpenMOC method of characteristics neutral particle transport code, Ann. Nucl. Energy 68 (2014) 43-52, https://doi.org/10.1016/j.anucene.2013.12.012.   DOI
25 S. Choi, D. Lee, Three-dimensional method of characteristics/diamond-difference transport analysis method in STREAM for whole-core neutron transport calculation, Comput. Phys. Commun. (2020), https://doi.org/10.1016/j.cpc.2020.107332, 107332.   DOI
26 Y. Li, W. Yang, S. Wang, H. Wu, L. Cao, A three-dimensional PWR-core pin-byp-in analysis code NECP-Bamboo 2.0, Ann. Nucl. Energy 144 (2020), https://doi.org/10.1016/j.anucene.2020.107507, 107507.   DOI
27 A.T. Godfrey, VERA Core Physics Benchmark Progression Problem Specifications, Oak Ridge National Laboratory, 2014.
28 H.G. Joo, D.A. Barber, G. Jiang, T.J. Downar. PARCS: Purdue Advanced Reactor Core Simulator PU/NE-08-26, Purdue University, 1998.
29 H. Lee, W. Kim, P. Zhang, M. Lemaire, A. Khassenov, J. Yu, Y. Jo, J. Park, D. Lee, Mcs - a Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139 (2020), https://doi.org/10.1016/j.anucene.2019.107276, 107276.   DOI