• Title/Summary/Keyword: almost Kenmotsu manifold

Search Result 29, Processing Time 0.017 seconds

CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH CONFORMAL REEB FOLIATION

  • Ghosh, Gopal;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.261-272
    • /
    • 2018
  • The object of the present paper is to study some curvature properties of almost Kenmotsu manifolds with conformal Reeb foliation. Among others it is proved that an almost Kenmotsu manifold with conformal Reeb foliation is Ricci semisymmetric if and only if it is an Einstein manifold. Finally, we study Yamabe soliton in this manifold.

ON THE 𝜂-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS

  • Jun-ichi Inoguchi;Ji-Eun Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1303-1336
    • /
    • 2023
  • In this paper, we study the 𝜂-parallelism of the Ricci operator of almost Kenmotsu 3-manifolds. First, we prove that an almost Kenmotsu 3-manifold M satisfying ∇𝜉h = -2𝛼h𝜑 for some constant 𝛼 has dominantly 𝜂-parallel Ricci operator if and only if it is locally symmetric. Next, we show that if M is an H-almost Kenmotsu 3-manifold satisfying ∇𝜉h = -2𝛼h𝜑 for a constant 𝛼, then M is a Kenmotsu 3-manifold or it is locally isomorphic to certain non-unimodular Lie group equipped with a left invariant almost Kenmotsu structure. The dominantly 𝜂-parallelism of the Ricci operator is equivalent to the local symmetry on homogeneous almost Kenmotsu 3-manifolds.

RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD

  • Patra, Dhriti Sundar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1315-1325
    • /
    • 2019
  • The purpose of this article is to study the Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold. First, we prove that if a para-Kenmotsu metric represents a Ricci soliton with the soliton vector field V is contact, then it is Einstein and the soliton is shrinking. Next, we prove that if a ${\eta}$-Einstein para-Kenmotsu metric represents a Ricci soliton, then it is Einstein with constant scalar curvature and the soliton is shrinking. Further, we prove that if a para-Kenmotsu metric represents a gradient Ricci almost soliton, then it is ${\eta}$-Einstein. This result is also hold for Ricci almost soliton if the potential vector field V is pointwise collinear with the Reeb vector field ${\xi}$.

THREE-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS WITH η-PARALLEL RICCI TENSOR

  • Wang, Yaning
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.793-805
    • /
    • 2017
  • In this paper, we prove that the Ricci tensor of a three-dimensional almost Kenmotsu manifold satisfying ${\nabla}_{\xi}h=0$, $h{\neq}0$, is ${\eta}$-parallel if and only if the manifold is locally isometric to either the Riemannian product $\mathbb{H}^2(-4){\times}\mathbb{R}$ or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.

GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS

  • Wang, Yaning
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1101-1114
    • /
    • 2016
  • Let ($M^{2n+1}$, ${\phi}$, ${\xi}$, ${\eta}$, g) be a (k, ${\mu}$)'-almost Kenmotsu manifold with k < -1 which admits a gradient Ricci almost soliton (g, f, ${\lambda}$), where ${\lambda}$ is the soliton function and f is the potential function. In this paper, it is proved that ${\lambda}$ is a constant and this implies that $M^{2n+1}$ is locally isometric to a rigid gradient Ricci soliton ${\mathbb{H}}^{n+1}(-4){\times}{\mathbb{R}}^n$, and the soliton is expanding with ${\lambda}=-4n$. Moreover, if a three dimensional Kenmotsu manifold admits a gradient Ricci almost soliton, then either it is of constant sectional curvature -1 or the potential vector field is pointwise colinear with the Reeb vector field.

ON LOCALLY 𝜙-CONFORMALLY SYMMETRIC ALMOST KENMOTSU MANIFOLDS WITH NULLITY DISTRIBUTIONS

  • De, Uday Chand;Mandal, Krishanu
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.401-416
    • /
    • 2017
  • The aim of this paper is to investigate locally ${\phi}-conformally$ symmetric almost Kenmotsu manifolds with its characteristic vector field ${\xi}$ belonging to some nullity distributions. Also, we give an example of a 5-dimensional almost Kenmotsu manifold such that ${\xi}$ belongs to the $(k,\;{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$.

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.

SOME RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED (k, µ)'-NULLITY DISTRIBUTION

  • De, Uday Chand;Ghosh, Gopal
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1289-1301
    • /
    • 2019
  • In the present paper, we prove that if there exists a second order parallel tensor on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$, then either the manifold is isometric to $H^{n+1}(-4){\times}{\mathbb{R}}^n$, or, the second order parallel tensor is a constant multiple of the associated metric tensor of $M^{2n+1}$ under certain restriction on k, ${\mu}$. Besides this, we study Ricci soliton on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution. Finally, we characterize such a manifold admitting generalized Ricci soliton.

On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds

  • Majhi, Pradip;Dey, Dibakar
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.781-790
    • /
    • 2021
  • The goal of this paper is to characterize a class of almost Kenmotsu manifolds admitting *-conformal Ricci solitons. It is shown that if a (2n + 1)-dimensional (k, µ)'-almost Kenmotsu manifold M admits *-conformal Ricci soliton, then the manifold M is *-Ricci flat and locally isometric to ℍn+1(-4) × ℝn. The result is also verified by an example.

A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS

  • Prasad, Rajendra;Verma, Sandeep Kumar;Kumar, Sumeet
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.669-682
    • /
    • 2019
  • The objective of this paper is to introduce and study Einstein-like para-Kenmotsu manifolds. For a para-Kenmotsu manifold to be Einstein-like, a necessary and sufficient condition in terms of its curvature tensor is obtained. We also obtain the scalar curvature of an Einstein-like para-Kenmotsu manifold. A necessary and sufficient condition for an almost para-contact metric hypersurface of a locally product Riemannian manifold to be para-Kenmotsu is derived and it is shown that the para-Kenmotsu hypersurface of a locally product Riemannian manifold of almost constant curvature is always Einstein.