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GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN
ALMOST KENMOTSU MANIFOLDS

MOHAN KHATRI AND JAY PRAKASH SINGH

ABSTRACT. The goal of this paper is to analyze the generalized m-quasi-
Einstein structure in the context of almost Kenmotsu manifolds. Firstly
we showed that a complete Kenmotsu manifold admitting a generalized
m-quasi-Einstein structure (g, f, m, \) is locally isometric to a hyperbolic
space H2"t1(—1) or a warped product M X~ R under certain conditions.
Next, we proved that a (k,u)’-almost Kenmotsu manifold with A’ # 0
admitting a closed generalized m-quasi-Einstein metric is locally isometric
to some warped product spaces. Finally, a generalized m-quasi-Einstein
metric (g, f,m,A) in almost Kenmotsu 3-H-manifold is considered and
proved that either it is locally isometric to the hyperbolic space H3(—1)
or the Riemannian product H2(—4) x R.

1. Introduction

The study of Einstein manifolds and their several generalizations have re-
ceived a lot of attention in recent years. A Ricci soliton is a Riemannian metric,
which satisfies

1

where Ly denotes the Lie-derivative operator along a potential vector field V,
S is the Ricci tensor of g and ) is a constant. Clearly, a trivial Ricci soliton
is an Einstein metric with V zero or Killing. When V = df, i.e., a gradient of
smooth function f, it is called a gradient Ricci soliton (see [4]).

Extending the notion of the m-Bakry-Emery Ricci tensor, Case [5] intro-
duced an interesting generalization of gradient Ricci soliton and Einstein man-
ifold. The m-Bakry-Emery Ricci tensor is defined as follows:

1
ST =S+ Vf — —df @ df,
m
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where the integer m satisfies 0 < m < 0o, V2f denotes the Hessian form of the
smooth function f. The m-Bakery-Emery Ricci tensor arises from the warped
product (M x N, g) of two Riemannian manifolds (M",g) and (N™, h) with
the Riemannian metric g = g + e~ h. We called a quadruple (g, f, m,\) on
a Riemannian manifold (M, g), m-quasi-Einstein structure if it satisfies the
equation

(1) S+V2f—%df®df:)\g

for some A € R. Notice that for m = oo, Eq. (1) gives gradient Ricci soliton
and for constant f, it becomes Einstein. The m-quasi-Einstein structure has
been deeply studied by [5,6,17].

Later on Barros-Ribeiro Jr. [1] and Limoncu [22] generalized and studied
equation (1) independently, by considering a 1-form V° instead of df, which
satisfied

1 1
(2) S+ 5Lvg— —V @V’ =g,
2 m

where V? is the 1-form associated with the potential vector field V. In particu-
lar, if the 1-form V'’ is closed, we called (2) closed m-quasi-Einstein structure.
When V' = 0, the m-quasi-Einstein structure is said to be trivial, and in this
case, the metric becomes an Einstein metric. Ghosh [13,16] studied contact
metric manifolds with quasi-Einstein structures (1) and (2). Recently, Chen [§]
studied quasi-Einstein structure (g,V,m,A) in almost cosympletic manifolds
and De et al. [10] studied quasi-Einstein metric (g, f,m, A) in the context of
three-dimensional cosympletic manifolds.

Extending the notion of quasi-Einstein structure, Catino [7] introduced and
studied the concept of the generalized quasi-Einstein manifold. A particular
case of this was proposed by Barros-Ribeiro Jr. [2] which is defined as follows:

A Riemannian manifold (M™, g) is said to be generalized m-quasi-Einstein
(g, f,m, ) if there exists a function A : M™ — R such that

(3) S+V2f—idf®df:/\g.
m

Notice that for m = oo, (3) reduces to gradient Ricci almost soliton. Also
when df is replaced by V’, then we called (3) generalized m-quasi-Einstein
(g9, V,m, \) structure. Moreover if V' = 0, then it is said to be trivial. Hu et
al. [18,19] studied generalized m-quasi-Einstein metric (g, f, m, \) with restric-
tion on Ricci curvature and scalar curvature. Ghosh [14] considered generalized
m-quasi-Einstein metric (g, f,m, A) in Sasakian and K-contact manifolds and
showed that it is isometric to the unit sphere S?*+1.

In continuation, we studied the generalized m-quasi-Einstein metric in the
framework of almost contact manifolds, namely Kenmotsu and almost Ken-
motsu manifolds. The paper is organized as follows: After preliminaries, in
Section 3 we analyzed generalized m-quasi-Einstein structure in Kenmotsu
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manifold. Firstly we constructed some examples of Kenmotsu manifold ad-
mitting generalized m-quasi-Einstein structure. Next, we showed that if a
complete Kenmotsu manifold whose Reeb vector field leaves the scalar cur-
vature invariant, admits a generalized m-quasi-Einstein structure (g, f,m, ),
then it is locally isometric to a hyperbolic space H?"*!(—1) or warped product
M x~ R. Moreover, a generalized m-quasi-Einstein structure whose potential
vector field is pointwise collinear with Reeb vector field is studied. Section 4 is
devoted to the study of closed generalized m-quasi-Einstein metric in (k, p)'-
almost Kenmotsu manifold. Finally, we looked at 3-dimensional non-Kenmotsu
almost Kenmotsu manifold admitting a generalized m-quasi-Einstein structure
and showed that it is locally isometric to a non-unimodular Lie group with a
left-invariant almost Kenmotsu structure.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M is called an almost contact metric
manifold if it admits a (1, 1)-tensor field ¢, a unit vector field ¢ (called the Reeb
vector field) and a 1-form 7 such that

(4) P*X = -X +n(X)¢, n(X) =g(X,¢)

for all vector field X on M. A Riemannian metric g is said to be an associated
(or compatible) metric if it satisfies

(5) 9(pX,pY) = g(X,Y) = n(X)n(Y)

for all vector fields X,Y on M. An almost contact manifold M?2"*1(p, &, n)
together with a compatible metric g is known as almost contact metric manifold
(see Blair [3]).

An almost Kenmotsu manifold is defined as an almost contact metric man-
ifold if it satisfies dyp = 0 and ® = 2y A ®, where the fundamental 2-form ®
of the almost contact metric manifold is defined by ®(X,Y) = ¢(X,¢Y) for
any vector fields X,Y on M (see [28]). On the product M?"*! x R of an al-
most contact metric manifold M2+ and R, there exists an almost complex
structure J defined by

d d
where X denotes a vector field tangent to M2"+1, ¢ is the coordinate of R and f
is a C°°-function on M?2"+1 x R. If J is integrable, then almost contact metric
structure on M2"*! is said to be normal. A normal almost Kenmotsu manifold
is called a Kenmotsu manifold (see [21]). An almost Kenmotsu manifold is a
Kenmotsu manifold if and only if

(Vxp)Y = g(pX,Y)§ —n(Y)pX
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for any vector fields X,Y on M?"*!. On a Kenmotsu manifold the following
holds [21]:

(6) V= X —n(X)E,
™) R(X,Y)E = n(X)Y —5(Y)X,
®) Q¢ = —2n¢

for any vector fields X,Y on M?"t!. Here R is the curvature tensor of g
and @ the Ricci operator associated with the (1,2) Ricci tensor S given by
S(X,Y) = g(QX,Y) for all vector fields X,Y on M?"*1 Tt is shown that a
Kenmotsu manifold is locally a warped product I x ; N*", where I is an open
interval with coordinate ¢, f = ce’ is the warping function for some positive
constant ¢ and N2" is a Kéhlerian manifold [21].

On an almost Kenmotsu manifold the following formula is valid [11,12]:

(9) Vxé=—¢’X — phX

for any vector field X on M?"*1. We define two operators h and £ by h = %Eggo
and £ = R(-,£)¢ on M?"*! satisfying hé = hW'é =0, Tr.h = Tr.h/ =0, hp =
—@h where h/ = h - ¢ and T'r. denotes trace.

3. Normal almost Kenmotsu manifold

In this section, we studied Kenmotsu manifold admitting generalized m-
quasi-Einstein structure. Firstly, we construct some examples of Kenmotsu
manifold admitting generalized m-quasi-Einstein metric.

Example 3.1. Let (N, J, go) be a Kéhler manifold of dimension 2n. Consider
the warped product (M, g) = (R x, N,dt? + 02gg), where t is the coordinate
on R. Weset n=dt, £ = % and the tensor field ¢ is defined on R x, N by
pX = JX for vector field X on N and ¢X = 0 if X is tangent to R. Then the
warped product R x, N, 02 = ce?! with the structure (¢, £, 7, g) is a Kenmotsu
manifold [21]. In particular, if we take N = CH*", then N being Einstein, the
Ricci tensor of M becomes S = —2ng. Further we define a smooth function
f(t) = ke, k > 0. Then it is easy to verify that (M, f,g,)\) is a generalized

m-quasi-Einstein structure with A\ = ’j—f:(m — ke') —2n on R x, CH?".

Similarly, a large group of examples of generalized m-quasi-Einstein metric
on Kenmotsu manifold can be constructed by taking different potential func-
tions on the warped product.

Example 3.2. Consider the warped product R x, H" with metric g = dt? +
a%go, where go is the standard metric on the hyperbolic space H" (see [15]).
Let o(t) = cosht. Then the warped product becomes Einstein manifold with
Ricci tensor S = —ng and it admits a generalized m-quasi-Einstein structure
(R xo H", f, g, A) with f(z,t) = sinht and A(z,t) = sinh ¢ — 22t _
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Example 3.3. Let M2 "1 = R X o5n ¢ CH?>" with metric g = dt? + (cosh?® t)go,
where go is the standard metric on the complex hyperbolic space CH?" (see
[15]). Then M?"*! becomes an Einstein manifold with the Ricci tensor SM =
—2ng (see Lemma 1.1 of [27]). Consider a function f(z,t) = sinht, then

(M?"+1 f g,)\) is a generalized m-quasi-Einstein structure if A = sinht —
2
7C°Smh t _ 9n.

Next we state and proved the following result:

Theorem 3.4. If the metric of a Kenmotsu manifold M*" (o, &,n,g) repre-
sents a generalized m-quasi-Einstein structure (g, f, m, \), then it is n-Einstein,

provided 1 + % £ 0. Moreover, if M?"*1 is complete and Reeb vector field &
leaves the scalar curvature invariant, them we have

(a) If f has a critical point, then M is isometric to the hyperbolic space
H2n+1(_1)'
(b) If a function f has no critical points, then M is isometric to the warped

product M x4 R of a complete Riemannian manifold M?" and the real
line R with warped function v : R — R such that 4 —~v =0, v > 0.

Proof. From (3), we have
1
(10) VXDf:)\XJrEg(X,Df)foQX.
Taking the covariant derivative of (10) along arbitrary vector field Y, we get
1

VyVxDf = (YNX + XYy X) + {g(X, VyDf)DJ
(11) +9(X, Df)(VyDf)} = (VyQ)X — Q(Vy X).
Making use of (10) and (11) in the relation

R(X,Y)Df =VxVyDf -VyVxDf —Vxy|Df

we obtain
R(X,Y)Df = (X\)Y — (YN X + (VyQ)X — (VxQ)Y
+ 2o(v,DJ)X — (X, DY)
(12) + L [o(X. DAQY —g(¥, DA)QX].

Taking an inner product of (12) with & and using (8) yields
9(R(X,Y)Df,£)
= (X)n(Y) = (YA)n(X) +9((VyQ)§, X)

13) o) + 22w Dy (x) - o(x, D)
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Taking an inner product of (7) with Df and inserting it in the last equation
(13) we obtain

(XY = (YA(X) + 9((T5 Q)€ X) - a((TxQ)E. V)
+ PEZEM 0y D () - g(X. DY) =01

Replacing Y by £ in (14) and making use of the relation (V Q)Y = —2QY —
4nY (see Lemma 2 of [15]) we get

(14)

(15) oDf —mDA ={a({f) —m(EN)}E,
where 0 = m + A + 2n. Contracting (12) along arbitrary vector field X gives
16) V(v Dy) = L) - 20(YN) + (200~ (¥, D).

Replacing Y by £ and using (8) in (16) we get

(17) L (2no — 4n? — 1 — 20)(¢f) — 2n(€N) + %(57«) 0.

—
Also on the Kenmotsu manifold, we have {&r = —2(r + 2n(2n + 1)) (Lemma 2
of [15]). Inserting this in the last equation infer

(13) 2 (ef) —m(en] = fr+ 2n(20 + 131+ EDy

Replacing Y by ¢ in (12) and using the relation R(X,&)Y = g(X,Y)é—n(Y)X,
we obtain

Lo ons —mDNE = T2 ) x —(ex)x
(19) -1+ %)QX —2nX.
Combining (15), (18) and (19) we obtain the following relation
o)+ o ne =+ i+ yx - x).

If possible take 1 + % # 0, then from the last equation we get
r r
for any vector field X on M. Therefore, M is n-Einstein.

Suppose that £ leaves the scalar curvature r invariant, i.e., {&r = 0. Conse-
quently, r = —2n(2n + 1). By virtue of this in (21) we get QX = —2nX, i.e.,
M is Einstein. Inserting r = —2n(2n + 1) in (18) gives a(£f) — m(EXN) = 0
and hence (15) implies DA = =D f. Now we consider a function u = e~ % on

M. Then it follows Du = —% D f. Taking covariant derivative of the forgoing

m
expression along arbitrary vector field X we get

(21) QX = (14 )X —(

(22) VxDf ~ (X, Df)Df = - "V xDu
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Using (22) along with the fact that QX = —2nX, (10) yields

A+2
(23) VXDuz—ﬂX,
m
Also we have (A + m + 2n)Df = mDA, simplifying it gives D(A\u) = —(m +
2n)Du which implies Au = —(m + 2n)u + k, k is a constant. Inserting the

forgoing relations in (23) we get
VxDu = (u— E)X
m
Applying Kanai’s theorem [20], we conclude that if f has a critical point, then
M is isometric to the hyperbolic space H?"*1(—1) or if f is without critical
points, then M is isometric to the warped product M X R of a complete

Riemannian manifold M?" and the real line R with warped function vy : R — R
such that 4 — vy =10,v > 0. O

Remark 3.5. Suppose 1 + % = 0 in some open set O of M. Then £f = —m,
since Kenmotsu manifold is locally isometric to the warped product (—¢, €) X et
N, where N is a Kahler manifold of dimension 2n and (—e, €) is an open interval
[21]. Using the local parametrization: £ = % then we have %{ = —m hence
the potential function is f = —mt, ¢t > 0.

Theorem 3.6. If a Kenmotsu manifold admits a non-trivial generalized m-
quasi-Einstein structure (g,V, m,\) whose potential vector field is pointwise
collinear with the Reeb vector field &, then it is n-Finstein.

Proof. Suppose potential vector field V is pointwise collinear with the Reeb
vector field £&. Then V = F¢, where F' is a smooth function. Differentiating
covariantly along arbitrary vector field X of V' = F¢ and using (6) we get

(24) VxV = (XF) + F(—¢*X — phX).
Inserting (24) in (2) gives

S(X,Y) + S[(XF)n(Y) + (YF)n(X)] + Fg(W'X,Y)

1

2
F2

(25) = (- EnX)n(Y) = (A = Flg(X,Y)

for all vector fields X,Y. Replacing X,Y by £ in (25) and using (8) we get

EF =) +2n+ %2 Further taking Y as £ and using the last expression in (25)
we obtain

(26) XF=(\+ %2 + 2n)n(X).

Contracting (25) and inserting in the above equation (26), yields
(27) r=2nA—F—1).
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In consequence of (26) and (27), Equation (25) reduces to the following form:
r r
(28) QX = (%—H)X— (%+2n+1)77(X)§

for any vector field X. Thus manifold is n-Einstein. This completes the proof.
O

Suppose F' is constant. Then (26) gives A = —2n — %2 This in (27) implies
r is constant. Hence {r = 0 which implies r = —2n(2n + 1). Inserting the
values of r and A in (27) gives F = —m which further implies A = —m — 2n.
Hence we can state the following:

Corollary 3.7. If a Kenmotsu manifold admits a non-trivial generalized m-
quasi-Einstein structure (g,V,m,\) whose potential vector is a constant mul-
tiple of Reeb vector field &, then it is Finstein, i.e., QX = —2nX with \ =
—m — 2n.

4. Non-normal almost Kenmotsu manifold

An almost Kenmotsu manifold M?"*1(p, £, 7, g) is said to be a generalized
(K, p)-almost Kenmotsu manifold if € belongs to the generalized (k, u)-nullity
distribution, i.e.,

(29) R(X,Y)E = k[n(Y)X = n(X)Y]+ pln(Y)hX —n(X)hY]

for all vector fields X,Y on M, where k,u are smooth functions on M. An
almost Kenmotsu manifold M2+ (i, &, n, g) is said to be a generalized (k, 1)’
almost Kenmotsu manifold if £ belongs to the generalized (k, p)'-nullity distri-
bution, i.e.,

(30) R(X,Y)§ = k[n(Y)X = n(X)Y]+ uln(Y)W' X —n(X)h'Y]

for all vector fields X,Y on M, where k,u are smooth functions on M and
B = hoy (see [12]). Moreover if both x and u are constants in (30), then M
is called a (k, u)'-almost Kenmotsu manifold (see [12,24,31]). On generalized

(k, ) or (K, p)'-almost Kenmotsu manifold with h # 0 (equivalently, h’ # 0),
the following relations hold [12]:

(31) h'? = (k+1)? h? = (k + 1),

(32) Q& = 2nk¢.

It follows from (31) that x < —1 and v = ++/—k — 1, where v is an eigenvalue
corresponding to eigenvector X € D (D = Ker(n)) of h’. The equality holds if
and only if h = 0 (equivalently, ' = 0). Thus h’ # 0 if and only if x < —1.

Lemma 4.1 ([31]). Let M*"*L(p,&,n,g) be a generalized (k, u) -almost Ken-
motsu manifold with h' # 0. For m > 1, the Ricci operator @ of M can be
expressed as

QX = —2nX + 2n(k + 1)n(X)é — [ —2(n — 1)A1X
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for any vector field X on M. Further, if kK and p are constants and n > 1,
then p = —2 and hence

(33) QX = —2nX +2n(k + 1)n(X)¢ — 2nh'X
for any vector field X on M. In both cases, the scalar curvature of M is
2n(k — 2n).

Proposition 4.2. There does not exist generalized m-quasi-FEinstein structure
with oV =0 in (k, u) -almost Kenmotsu manifold with h' # 0.

Proof. By hypothesis we have ¢V = 0. Operating this with ¢ gives V = n(V)¢,
i.e., V= F¢, where F is a smooth function. Taking covariant derivative along
arbitrary vector field X of the last equation and inserting it in (2) we obtain

SOGY) + SUXE)(Y) + (VEy(X)] + Fg(h'X,Y)

F2
(34) = (- EnX)n(Y) = (A = Flg(X,Y).
Replacing X by £ in (34) yields
1 F? 1
§(YF) =+ P 20k — 5(5F)]77(Y)
for any vector field X on M. Contracting (32) and using Lemma 4.1, we get

(36) EF = (2n+ )X —2n(k — 2n) + %2 —2nkF.

(35)

Replacing Y by € in (35) and combining it with (36) gives F' = A+2n. Inserting
(35) in (34) and using it in Lemma 4.1, we obtain

(37)  {2a+ %2 — F = 2nk 4 2n — (EF)I(X)n(Y) + Ag(h'X,Y) = 0.

Replacing X by A'X in (37) implies A(x + 1)g(¢X,9Y) = 0. Since ' # 0
and kK < —1, we get A = 0 and using it in F¥ = A+ 2n gives F' = 2n. In a
consequence of this in (36) we get x = 22, a contradiction. This completes the

m’

proof. O
Now using the above lemmas and proposition we proved the following;:

Theorem 4.3. Let M*"*1(p,£,m,9) be a (k, u)'-almost Kenmotsu manifold
with h' # 0. If g admits a closed generalized m-quasi-Finstein metric, then we
get one of the following:

1. M?™+1 s locally isometric to H"1(—4) x R™.

2. M?n+1 s locally isometric to the warped product

HnJrl(Oé) Xf Rn, IB%"+1(0/) X R"

)

where H" («) is the hyperbolic space of constant curvature o = —1— QTm -
2 m
B"*t1(a') is a space of constant curvature o/ = —1 + 277" -0, f= cel=3)t

m .-
and ' = et where ¢, ¢ are positive constants.
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Proof. Since V? is closed, Eq. (2) implies
1
(38) VxV =XX+ —g(X, V)V - QX.
m

Making use of the relation R(X,Y)V = VxVyV —VyVxV —Vx 1V in (38)
we get

R(X,Y)V = (XA)Y = (YA)X +(VyQ)X — (VxQ)Y
(39) 2 [V, V)X g(X, VIV + - {g(X,V)QY ~ o(Y, V)QX).
Taking an inner product of (39) with ¢ and using Lemma 4.4 of [25] we obtain
g(R(X,Y)V,€) = (XN)n(Y) = (Y A)n(X)
+9(QphY, X) — g(QphX.,Y)
+ O V() — o(X V().

Contracting (39) and making use of the fact that scalar curvature is constant
yields

(40)

(41) %

1
SY,V)=-2nY\)+ E(Zn)\ -r)gY,V).
Taking an inner product of (30) with V' and inserting it in (40) we get
1

(42) (EN)E — DX — E{A — (2n+m)r}p?V + 20V = 0.
Operating by ¢ in (42) yields

1
(43) —{A=(2n+m)k}pV — DX+ 2ph'V = 0.

m
Making use of (33) in (41) and operating the obtained expression by ¢ we get
(44)  {2nX —r+2n(m — 1)}V — 2nmeDA + 2n(m — 1)ph'V = 0.
Combining (43) and (44) we get

2nA+m—1)—r— W{)\ — (2n+m)k}teV —n(l+m)eDA =0
implies
n(m —1)

2n(A+m—1)—r — (N — (2n+ m)&}]V — n(1 + m)DA € RE.

Therefore we can write
(45) DX = aV + s,

where

a= n(m1+1)[2n()\+m—1)—r—n(win_l){)\—(?n—km)n}]
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and s is a smooth function on M. Inserting (45) in (42) gives
(46) (EN)E —aV — s& — %{)\ — (2n+m)K}P*V + 20V = 0.
Operating (46) by h’ we get
%{/\ — 2n+m)k — am}h'V +2(k +1)*V = 0.
Inserting the last equation in (46) we obtain

A4k +1)?V = %[/\ — (2n+m)k — am]

1
(47) X [(ENE = aV = s6 = —{A = (2n +m)r}p*V],
then operating (47) by ¢ and using Proposition 4.2, we get
(48) A= (2n+m)k —am]® +4m?(k+1) =0
implies A is constant. Replacing Y by £ in (41) and taking A as constant, gives
(49) A — % — K(m = 1)n(V) =0.

So we get either n(V) =0or A — 5~ — k(m — 1) = 0.

Case-I: Suppose (V) = 0. Then taking covariant derivative along ¢ and
using (38) gives A = 2nk. Inserting this in (48) we get kK = —2. Without loss
of generality, we may choose v = 1. In consequence of this in Theorem 5.1 [24]
we get

R(X,/, YV)ZU = _4[9(YV7 ZV)XV - g(Xuv ZV)YI/]7
R(X_,,Y_)Z_, =0

for any X,,,Y,,Z, € [v]' and X_,,Y_,,Z_, € [—v]. Making use of the fact
that p = —2 it follows from Proposition 4.1 [12] and Proposition 4.3 [12] that
K(X,§) = —4 for any X € [v] and K(X,§) = 0 for any X € [-v]. As
shown in [12] that the distribution [£] @ [v]’ is integrable with totally geodesic
leaves and the distribution [—v]’ is integrable with total umbilical leaves by
H = —(1 —v)&, where H is the mean curvature vector field for the leaves of
[—v]" immersed in M?"*!. Taking v = 1, then the two distribution [¢] & [v]’
and [—v]’ are both integrable with totally geodesic leaves immersed in M?"+1,
Hence M2+ is locally isometric to H*1(—4) x R™.

Case-II: If A — 5~ — k(m — 1) = 0, then inserting the value of scalar curvature
from Lemma 4.1 gives A = mx — 2n. Using this in (48) implies k = —1 — ’;:—22

By applying Dileo-Pastore [12] result we complete the proof. O

Remark 4.4. When V = Df, it is clear that V” is closed. Therefore if a
non-normal (k, p)-almost Kenmotsu manifold admits a generalized m-quasi-
Einstein structure (g, f, m, A), then we get similar results as in Theorem 4.3.
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As a particular case of Theorem 4.3, for m = co we easily obtain Theorem 3.1
[29].

Let U; be the open subset of a 3-dimensional almost Kenmotsu manifold
M? such that h # 0 and U, the open subset of M3 which is defined by Us =
{p € M3 : h =0 in a neighbourhood of p}. Therefore U; U, is an open and
dense subset of M? and there exists a local orthonormal basis {e1 = e,e9 =
pe,es = £} of three smooth unit eigenvectors of h for any point p € U; U Us.
On U; we may set he; = Je; and hes = —des, where ¢ is a positive function.

Lemma 4.5 ([9]). On U, we have
Vel =0, Vee = ape, Vepe = —ae,
Vel =e—9pe, Vee=—E&—bpe, V.pe = VE+ be,
Vel = —Ue + e, Vyee =9 4 cpe, Vepe = —€ — ce,
where a, b, c are smooth functions.

From Lemma 4.5, the poisson brackets for {e; = e,ea = pe,e3 = £} are as
follows:

[63761] ( +?9)62 — €1,
(50) [61, 62] = 0ep — ceg,
[62,63] = ( 19)61 —+ €.

Then the expression for Ricci operator are as follows:
Lemma 4.6. The Ricci operator Q with respect to the local basis {, e, e} on
Uy can be written as
Q& = —2(9 +1)& — (pe(V) + 20b)e — (e(V) + 20¢)pe
Qe = —(pe(V) + 20b)¢ — (A + 29a)e + (£(9) + 209)pe,
Que = —(e(¥) + 29¢)€ + (£(¥) + 29)e — (A — 29a) e,
where we set A = e(c) + b? + ¢ + pe(b) + 2 for simplicity.

Before proceeding to the main result, we recollect a few basic notions of
harmonic vector fields. Perrone [26] characterized the harmonicity of an almost
Kenmotsu manifold. Let (M",g) be a Riemannian manifold and (T M, g) its
unit tangent sphere bundle furnished with the well-known standard Sasakian

metric gs. If M is compact, then the energy E(V) is defined as the energy of
the corresponding map V from (M, g) into (T M, g,) by

E(V) / 1dV|Pduy = " Vol(M, ) + / 1VV|Pdu,,

where F indicates the energy function and V being the Levi-Civita connection
of g. V, a unit vector field is named harmonic if it is a critical point for F
defined on the set of all unit vector fields W!(M), that is

AV —||VV|*V =0,
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where A indicates the rough Laplacian, that is, AV = —trV?V. The critical
point condition still specifies a harmonic vector field even though M is non-
compact. A Kenmotsu 3-manifold’s Reeb vector field is always harmonic. Now
we give the subsequent definition (see [30]).

Definition. An almost Kenmotsu 3-manifold with harmonic Reeb vector field
or equivalently, the Reeb vector field is an eigenvector field of the Ricci operator,
is called almost Kenmotsu 3-H-manifold.

Now we state and prove the following:

Theorem 4.7. If a 3-dimensional almost Kenmotsu 3-H-manifold with h' #
0 admits a generalized m-quasi-Einstein (g, f,m,\) structure whose potential
function is constant along the Reeb vector field, then it is Finstein or is locally
isometric to a non-unimodular Lie group with a left-invariant almost Kenmotsu
structure.

Proof. For an almost Kenmotsu 3-H-manifold from Lemma 4.6, we have
(51) e(¥) = —29¢, pe(¥) = —b.

By our assumption, since potential function is constant along the Reeb vector
field, we can write

(52) Df = fie+ fape

for smooth functions f; = f(e) and fa = pe(f). Substituting X = £ in (10)
and using Lemma 4.5, Lemma 4.6 and (52) gives

Eh—afa =0,
(53) afi +£&(f2) =0,
A=2(9%+1).
Again, putting X = e in (10) and then using Lemma 4.5, Lemma 4.6 and (52)
gives
e(f1) +bfo = A+ Lk — A—20a,
(54) dfe— f1 =0,
e(f2) — bfy = L2 — £(9) — 20.
Similarly, for X = pe, we get

pe(fr) — cfz = L2 — £(0) — 20,
2
(55) pelfo) +cfi = A+ 72 + A~ 2a0,
df1 — fo=0.
Comparing the second argument of (54) and third argument of (55), we get
(92 —1)fy = 0. If fo = 0, then third argument of (55) implies f; = 0, then
(52) gives Df = 0, that is, f is constant.
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For the case fo # 0, we have ¢ = 1. In consequence, second argument of
(54) and third argument of (55) gives f1 = fo. Moreover, taking 9 = 1 in (51),
we get b = ¢ = 0. Also, first and second equation of (53) gives a = 0 when
f1 = f2. Inserting the above values in (50), we get

les,e1] = ex —e1, [e1,e2] =0, [e2,e3] = —e1 + ea.

Using Milnor’s result [23], we can conclude that M? is locally isometric to a
non-unimodular Lie group with a left-invariant almost Kenmotsu structure.
This completes the proof. (I

In consequence of Theorem 4.7, we can state the following corollary.

Corollary 4.8. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a
non-trivial generalized m-quasi-Einstein (g, f,m, ) structure whose potential
function is constant along the Reeb vector field, then it is locally isometric to
either the hyperbolic space H3(—1) or the Riemannian product H?(—4) x R.

Proof. We shall divide the prove into two cases:
Case-I: When h = 0, then M is a Kenmotsu manifold. Then we have

(56) QX = (5 + DX - (5 +3m(X)e.

By assumption, £f = 0. Replacing X = £ in (10) then taking inner product
with £ gives A = —2n under our assumptions. In consequence, (7) gives &r = 0.
Since &r = —2(r + 6), we get r = —6 which reduces (56) to QX = —2X.
Clearly, M? is conformally flat.
Case-II: When h # 0, then by Theorem 4.7, we have a = b = ¢ = 0. From
Lemma 4.6, we see that 7 = —2(9% + 1) — 2A. Making use of the fact that
a=0b=c=0 implies r = —8. It is easy to see that M? is conformally flat.
Applying Wang’s theorem ([30, Theorem 1.6]), we can conclude that M3
is locally isometric to either the hyperbolic space H3(—1) or the Riemannian
product H?(—4) x R. O

Corollary 4.9. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a
non-trivial m-quasi-Finstein (g, f,m, X) structure whose potential function is
constant along the Reeb vector field, then either it is locally isometric to the
hyperbolic space H3(—1) or the Riemannian product H?(—4) x R.

Next, we constructed an example of almost Kenmotsu manifold admitting a
generalized m-quasi-Einstein structure.

Example 4.10. Let (N, J,g) be a strictly almost Kédhler Einstein manifold.
We set n =dt, £ = % and the tensor field ¢ is defined on Rx ¢ N by p X = JX
for vector field X on N and pX = 0 if X is tangent to R. Consider a metric
g = go + 023, where 02 = ce?, gy is the Euclidean metric on R and c is a
positive constant. Then it is easy to verify that the warped product R x, IV,
0? = ce?', with the structure (p,&,n, g) is an almost Kenmotsu manifold [11].

Since N is Einstein S = —2ng. We define a smooth function f(x,t) = t2.
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then it is easy to verify that the warped product R x, N, 02 = ce?’ admits a

generalized m-quasi-Einstein structure (g, f,m, A) with A = 2 (m(1 —n) —2t%).
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