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GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN

ALMOST KENMOTSU MANIFOLDS

Mohan Khatri and Jay Prakash Singh

Abstract. The goal of this paper is to analyze the generalized m-quasi-

Einstein structure in the context of almost Kenmotsu manifolds. Firstly
we showed that a complete Kenmotsu manifold admitting a generalized

m-quasi-Einstein structure (g, f,m, λ) is locally isometric to a hyperbolic

space H2n+1(−1) or a warped product M̃ ×γ R under certain conditions.

Next, we proved that a (κ, µ)′-almost Kenmotsu manifold with h′ ̸= 0
admitting a closed generalizedm-quasi-Einstein metric is locally isometric

to some warped product spaces. Finally, a generalized m-quasi-Einstein

metric (g, f,m, λ) in almost Kenmotsu 3-H-manifold is considered and
proved that either it is locally isometric to the hyperbolic space H3(−1)

or the Riemannian product H2(−4)× R.

1. Introduction

The study of Einstein manifolds and their several generalizations have re-
ceived a lot of attention in recent years. A Ricci soliton is a Riemannian metric,
which satisfies

1

2
LV g + S − λg = 0,

where LV denotes the Lie-derivative operator along a potential vector field V ,
S is the Ricci tensor of g and λ is a constant. Clearly, a trivial Ricci soliton
is an Einstein metric with V zero or Killing. When V = df , i.e., a gradient of
smooth function f , it is called a gradient Ricci soliton (see [4]).

Extending the notion of the m-Bakry-Emery Ricci tensor, Case [5] intro-
duced an interesting generalization of gradient Ricci soliton and Einstein man-
ifold. The m-Bakry-Emery Ricci tensor is defined as follows:

Sm
f = S +∇2f − 1

m
df ⊗ df,
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where the integer m satisfies 0 < m ≤ ∞, ∇2f denotes the Hessian form of the
smooth function f . The m-Bakery-Emery Ricci tensor arises from the warped
product (M × N, ḡ) of two Riemannian manifolds (Mn, g) and (Nm, h) with

the Riemannian metric ḡ = g + e−
2f
m h. We called a quadruple (g, f,m, λ) on

a Riemannian manifold (M, g), m-quasi-Einstein structure if it satisfies the
equation

S +∇2f − 1

m
df ⊗ df = λg(1)

for some λ ∈ R. Notice that for m = ∞, Eq. (1) gives gradient Ricci soliton
and for constant f , it becomes Einstein. The m-quasi-Einstein structure has
been deeply studied by [5, 6, 17].

Later on Barros-Ribeiro Jr. [1] and Limoncu [22] generalized and studied
equation (1) independently, by considering a 1-form V ♭ instead of df , which
satisfied

S +
1

2
LV g −

1

m
V ♭ ⊗ V ♭ = λg,(2)

where V ♭ is the 1-form associated with the potential vector field V . In particu-
lar, if the 1-form V ♭ is closed, we called (2) closed m-quasi-Einstein structure.
When V ≡ 0, the m-quasi-Einstein structure is said to be trivial, and in this
case, the metric becomes an Einstein metric. Ghosh [13, 16] studied contact
metric manifolds with quasi-Einstein structures (1) and (2). Recently, Chen [8]
studied quasi-Einstein structure (g, V,m, λ) in almost cosympletic manifolds
and De et al. [10] studied quasi-Einstein metric (g, f,m, λ) in the context of
three-dimensional cosympletic manifolds.

Extending the notion of quasi-Einstein structure, Catino [7] introduced and
studied the concept of the generalized quasi-Einstein manifold. A particular
case of this was proposed by Barros-Ribeiro Jr. [2] which is defined as follows:

A Riemannian manifold (Mn, g) is said to be generalized m-quasi-Einstein
(g, f,m, λ) if there exists a function λ : Mn → R such that

S +∇2f − 1

m
df ⊗ df = λg.(3)

Notice that for m = ∞, (3) reduces to gradient Ricci almost soliton. Also
when df is replaced by V ♭, then we called (3) generalized m-quasi-Einstein
(g, V,m, λ) structure. Moreover if V ≡ 0, then it is said to be trivial. Hu et
al. [18,19] studied generalized m-quasi-Einstein metric (g, f,m, λ) with restric-
tion on Ricci curvature and scalar curvature. Ghosh [14] considered generalized
m-quasi-Einstein metric (g, f,m, λ) in Sasakian and K-contact manifolds and
showed that it is isometric to the unit sphere S2n+1.

In continuation, we studied the generalized m-quasi-Einstein metric in the
framework of almost contact manifolds, namely Kenmotsu and almost Ken-
motsu manifolds. The paper is organized as follows: After preliminaries, in
Section 3 we analyzed generalized m-quasi-Einstein structure in Kenmotsu
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manifold. Firstly we constructed some examples of Kenmotsu manifold ad-
mitting generalized m-quasi-Einstein structure. Next, we showed that if a
complete Kenmotsu manifold whose Reeb vector field leaves the scalar cur-
vature invariant, admits a generalized m-quasi-Einstein structure (g, f,m, λ),
then it is locally isometric to a hyperbolic space H2n+1(−1) or warped product

M̃ ×γ R. Moreover, a generalized m-quasi-Einstein structure whose potential
vector field is pointwise collinear with Reeb vector field is studied. Section 4 is
devoted to the study of closed generalized m-quasi-Einstein metric in (κ, µ)′-
almost Kenmotsu manifold. Finally, we looked at 3-dimensional non-Kenmotsu
almost Kenmotsu manifold admitting a generalized m-quasi-Einstein structure
and showed that it is locally isometric to a non-unimodular Lie group with a
left-invariant almost Kenmotsu structure.

2. Preliminaries

A (2n+1)-dimensional smooth manifoldM is called an almost contact metric
manifold if it admits a (1, 1)-tensor field φ, a unit vector field ξ (called the Reeb
vector field) and a 1-form η such that

φ2X = −X + η(X)ξ, η(X) = g(X, ξ)(4)

for all vector field X on M . A Riemannian metric g is said to be an associated
(or compatible) metric if it satisfies

(5) g(φX,φY ) = g(X,Y )− η(X)η(Y )

for all vector fields X,Y on M . An almost contact manifold M2n+1(φ, ξ, η)
together with a compatible metric g is known as almost contact metric manifold
(see Blair [3]).

An almost Kenmotsu manifold is defined as an almost contact metric man-
ifold if it satisfies dη = 0 and Φ = 2η ∧ Φ, where the fundamental 2-form Φ
of the almost contact metric manifold is defined by Φ(X,Y ) = g(X,φY ) for
any vector fields X,Y on M (see [28]). On the product M2n+1 × R of an al-
most contact metric manifold M2n+1 and R, there exists an almost complex
structure J defined by

J
(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and f
is a C∞-function on M2n+1 ×R. If J is integrable, then almost contact metric
structure on M2n+1 is said to be normal. A normal almost Kenmotsu manifold
is called a Kenmotsu manifold (see [21]). An almost Kenmotsu manifold is a
Kenmotsu manifold if and only if

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX
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for any vector fields X,Y on M2n+1. On a Kenmotsu manifold the following
holds [21]:

∇Xξ = X − η(X)ξ,(6)

R(X,Y )ξ = η(X)Y − η(Y )X,(7)

Qξ = −2nξ(8)

for any vector fields X,Y on M2n+1. Here R is the curvature tensor of g
and Q the Ricci operator associated with the (1, 2) Ricci tensor S given by
S(X,Y ) = g(QX,Y ) for all vector fields X,Y on M2n+1. It is shown that a
Kenmotsu manifold is locally a warped product I ×f N2n, where I is an open
interval with coordinate t, f = cet is the warping function for some positive
constant c and N2n is a Kählerian manifold [21].

On an almost Kenmotsu manifold the following formula is valid [11,12]:

∇Xξ = −φ2X − φhX(9)

for any vector field X on M2n+1. We define two operators h and ℓ by h = 1
2Lξφ

and ℓ = R(·, ξ)ξ on M2n+1 satisfying hξ = h′ξ = 0, Tr.h = Tr.h′ = 0, hφ =
−φh where h′ = h · φ and Tr. denotes trace.

3. Normal almost Kenmotsu manifold

In this section, we studied Kenmotsu manifold admitting generalized m-
quasi-Einstein structure. Firstly, we construct some examples of Kenmotsu
manifold admitting generalized m-quasi-Einstein metric.

Example 3.1. Let (N, J, g0) be a Kähler manifold of dimension 2n. Consider
the warped product (M, g) = (R ×σ N, dt2 + σ2g0), where t is the coordinate
on R. We set η = dt, ξ = ∂

∂t and the tensor field φ is defined on R ×σ N by
φX = JX for vector field X on N and φX = 0 if X is tangent to R. Then the
warped product R×σN , σ2 = ce2t with the structure (φ, ξ, η, g) is a Kenmotsu
manifold [21]. In particular, if we take N = CH2n, then N being Einstein, the
Ricci tensor of M becomes S = −2ng. Further we define a smooth function
f(t) = ket, k > 0. Then it is easy to verify that (M,f, g, λ) is a generalized

m-quasi-Einstein structure with λ = ket

m (m− ket)− 2n on R×σ CH2n.

Similarly, a large group of examples of generalized m-quasi-Einstein metric
on Kenmotsu manifold can be constructed by taking different potential func-
tions on the warped product.

Example 3.2. Consider the warped product R ×σ Hn with metric g = dt2 +
σ2g0, where g0 is the standard metric on the hyperbolic space Hn (see [15]).
Let σ(t) = cosh t. Then the warped product becomes Einstein manifold with
Ricci tensor S = −ng and it admits a generalized m-quasi-Einstein structure

(R×σ Hn, f, g, λ) with f(x, t) = sinh t and λ(x, t) = sinh t− cosh2 t
m − n.
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Example 3.3. Let M2n+1 = R×cosh t CH2n with metric g = dt2 +(cosh2 t)g0,
where g0 is the standard metric on the complex hyperbolic space CH2n (see
[15]). Then M2n+1 becomes an Einstein manifold with the Ricci tensor SM =
−2ng (see Lemma 1.1 of [27]). Consider a function f(x, t) = sinh t, then
(M2n+1, f, g, λ) is a generalized m-quasi-Einstein structure if λ = sinh t −
cosh2 t

m − 2n.

Next we state and proved the following result:

Theorem 3.4. If the metric of a Kenmotsu manifold M2n+1(φ, ξ, η, g) repre-
sents a generalized m-quasi-Einstein structure (g, f,m, λ), then it is η-Einstein,

provided 1 + ξ(f)
m ̸= 0. Moreover, if M2n+1 is complete and Reeb vector field ξ

leaves the scalar curvature invariant, then we have

(a) If f has a critical point, then M is isometric to the hyperbolic space
H2n+1(−1).

(b) If a function f has no critical points, then M is isometric to the warped

product M̃ ×γ R of a complete Riemannian manifold M̃2n and the real
line R with warped function γ : R → R such that γ̈ − γ = 0, γ > 0.

Proof. From (3), we have

∇XDf = λX +
1

m
g(X,Df)Df −QX.(10)

Taking the covariant derivative of (10) along arbitrary vector field Y , we get

∇Y ∇XDf = (Y λ)X + λ(∇Y X) +
1

m
{g(X,∇Y Df)Df

+ g(X,Df)(∇Y Df)} − (∇Y Q)X −Q(∇Y X).(11)

Making use of (10) and (11) in the relation

R(X,Y )Df = ∇X∇Y Df −∇Y ∇XDf −∇[X,Y ]Df

we obtain

R(X,Y )Df = (Xλ)Y − (Y λ)X + (∇Y Q)X − (∇XQ)Y

+
λ

m
[g(Y,Df)X − g(X,Df)Y ]

+
1

m
[g(X,Df)QY − g(Y,Df)QX].(12)

Taking an inner product of (12) with ξ and using (8) yields

g(R(X,Y )Df, ξ)

= (Xλ)η(Y )− (Y λ)η(X) + g((∇Y Q)ξ,X)

− g((∇XQ)ξ, Y ) +
(λ+ 2n)

m
[g(Y,Df)η(X)− g(X,Df)η(Y )].(13)
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Taking an inner product of (7) with Df and inserting it in the last equation
(13) we obtain

(Xλ)η(Y )− (Y λ)η(X) + g((∇Y Q)ξ,X)− g((∇XQ)ξ, Y )

+
(λ+ 2n+m)

m
[g(Y,Df)η(X)− g(X,Df)η(Y )] = 0.(14)

Replacing Y by ξ in (14) and making use of the relation (∇ξQ)Y = −2QY −
4nY (see Lemma 2 of [15]) we get

σDf −mDλ = {σ(ξf)−m(ξλ)}ξ,(15)

where σ = m+ λ+ 2n. Contracting (12) along arbitrary vector field X gives

(m− 1)

m
S(Y,Df) =

1

2
(Y r)− 2n(Y λ) +

1

m
(2nλ− r)g(Y,Df).(16)

Replacing Y by ξ and using (8) in (16) we get

1

m
(2nσ − 4n2 − r − 2n)(ξf)− 2n(ξλ) +

1

2
(ξr) = 0.(17)

Also on the Kenmotsu manifold, we have ξr = −2(r + 2n(2n+ 1)) (Lemma 2
of [15]). Inserting this in the last equation infer

2n

m
[σ(ξf)−m(ξλ)] = {r + 2n(2n+ 1)}{1 + (ξf)

m
}.(18)

Replacing Y by ξ in (12) and using the relation R(X, ξ)Y = g(X,Y )ξ−η(Y )X,
we obtain

1

m
g(X,σDf −mDλ)ξ =

(σ − 2n)

m
(ξf)X − (ξλ)X

− (1 +
ξf

m
)QX − 2nX.(19)

Combining (15), (18) and (19) we obtain the following relation

(1 +
ξf

m
)(

r

2n
+ 2n+ 1)η(X)ξ = (1 +

ξf

m
){( r

2n
+ 1)X −QX}.(20)

If possible take 1 + ξf
m ̸= 0, then from the last equation we get

QX = (1 +
r

2n
)X − (

r

2n
+ 2n+ 1)η(X)ξ(21)

for any vector field X on M . Therefore, M is η-Einstein.
Suppose that ξ leaves the scalar curvature r invariant, i.e., ξr = 0. Conse-

quently, r = −2n(2n + 1). By virtue of this in (21) we get QX = −2nX, i.e.,
M is Einstein. Inserting r = −2n(2n + 1) in (18) gives σ(ξf) − m(ξλ) = 0

and hence (15) implies Dλ = σ
mDf . Now we consider a function u = e−

f
m on

M . Then it follows Du = − u
mDf . Taking covariant derivative of the forgoing

expression along arbitrary vector field X we get

∇XDf − 1

m
g(X,Df)Df = −m

u
∇XDu.(22)
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Using (22) along with the fact that QX = −2nX, (10) yields

∇XDu = − (λ+ 2n)u

m
X.(23)

Also we have (λ + m + 2n)Df = mDλ, simplifying it gives D(λu) = −(m +
2n)Du which implies λu = −(m + 2n)u + k, k is a constant. Inserting the
forgoing relations in (23) we get

∇XDu = (u− k

m
)X.

Applying Kanai’s theorem [20], we conclude that if f has a critical point, then
M is isometric to the hyperbolic space H2n+1(−1) or if f is without critical

points, then M is isometric to the warped product M̃ ×γ R of a complete

Riemannian manifold M̃2n and the real line R with warped function γ : R → R
such that γ̈ − γ = 0, γ > 0. □

Remark 3.5. Suppose 1 + ξf
m = 0 in some open set O of M . Then ξf = −m,

since Kenmotsu manifold is locally isometric to the warped product (−ϵ, ϵ)×cet

N , where N is a Kähler manifold of dimension 2n and (−ϵ, ϵ) is an open interval

[21]. Using the local parametrization: ξ = ∂
∂t then we have ∂f

∂t = −m hence
the potential function is f = −mt, t > 0.

Theorem 3.6. If a Kenmotsu manifold admits a non-trivial generalized m-
quasi-Einstein structure (g, V,m, λ) whose potential vector field is pointwise
collinear with the Reeb vector field ξ, then it is η-Einstein.

Proof. Suppose potential vector field V is pointwise collinear with the Reeb
vector field ξ. Then V = Fξ, where F is a smooth function. Differentiating
covariantly along arbitrary vector field X of V = Fξ and using (6) we get

∇XV = (XF )ξ + F (−φ2X − φhX).(24)

Inserting (24) in (2) gives

S(X,Y ) +
1

2
[(XF )η(Y ) + (Y F )η(X)] + Fg(h′X,Y )

− (
F 2

m
+ F )η(X)η(Y ) = (λ− F )g(X,Y )(25)

for all vector fields X,Y . Replacing X,Y by ξ in (25) and using (8) we get

ξF = λ+2n+ F 2

m . Further taking Y as ξ and using the last expression in (25)
we obtain

XF = (λ+
F 2

m
+ 2n)η(X).(26)

Contracting (25) and inserting in the above equation (26), yields

r = 2n(λ− F − 1).(27)
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In consequence of (26) and (27), Equation (25) reduces to the following form:

QX = (
r

2n
+ 1)X − (

r

2n
+ 2n+ 1)η(X)ξ(28)

for any vector field X. Thus manifold is η-Einstein. This completes the proof.
□

Suppose F is constant. Then (26) gives λ = −2n− F 2

m . This in (27) implies
r is constant. Hence ξr = 0 which implies r = −2n(2n + 1). Inserting the
values of r and λ in (27) gives F = −m which further implies λ = −m − 2n.
Hence we can state the following:

Corollary 3.7. If a Kenmotsu manifold admits a non-trivial generalized m-
quasi-Einstein structure (g, V,m, λ) whose potential vector is a constant mul-
tiple of Reeb vector field ξ, then it is Einstein, i.e., QX = −2nX with λ =
−m− 2n.

4. Non-normal almost Kenmotsu manifold

An almost Kenmotsu manifold M2n+1(φ, ξ, η, g) is said to be a generalized
(κ, µ)-almost Kenmotsu manifold if ξ belongs to the generalized (κ, µ)-nullity
distribution, i.e.,

R(X,Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ](29)

for all vector fields X,Y on M , where κ, µ are smooth functions on M . An
almost Kenmotsu manifold M2n+1(φ, ξ, η, g) is said to be a generalized (κ, µ)′-
almost Kenmotsu manifold if ξ belongs to the generalized (κ, µ)′-nullity distri-
bution, i.e.,

R(X,Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ](30)

for all vector fields X,Y on M , where κ, µ are smooth functions on M and
h′ = h ◦ φ (see [12]). Moreover if both κ and µ are constants in (30), then M
is called a (κ, µ)′-almost Kenmotsu manifold (see [12, 24, 31]). On generalized
(κ, µ) or (κ, µ)′-almost Kenmotsu manifold with h ̸= 0 (equivalently, h′ ̸= 0),
the following relations hold [12]:

h′2 = (κ+ 1)φ2, h2 = (κ+ 1)φ2,(31)

Qξ = 2nκξ.(32)

It follows from (31) that κ ≤ −1 and ν = ±
√
−κ− 1, where ν is an eigenvalue

corresponding to eigenvector X ∈ D (D = Ker(η)) of h′. The equality holds if
and only if h = 0 (equivalently, h′ = 0). Thus h′ ̸= 0 if and only if κ < −1.

Lemma 4.1 ([31]). Let M2n+1(φ, ξ, η, g) be a generalized (κ, µ)′-almost Ken-
motsu manifold with h′ ̸= 0. For n > 1, the Ricci operator Q of M can be
expressed as

QX = −2nX + 2n(κ+ 1)η(X)ξ − [µ− 2(n− 1)h′]X



GENERALIZED m-QUASI-EINSTEIN STRUCTURE 725

for any vector field X on M . Further, if κ and µ are constants and n ≥ 1,
then µ = −2 and hence

QX = −2nX + 2n(κ+ 1)η(X)ξ − 2nh′X(33)

for any vector field X on M . In both cases, the scalar curvature of M is
2n(κ− 2n).

Proposition 4.2. There does not exist generalized m-quasi-Einstein structure
with φV = 0 in (κ, µ)′-almost Kenmotsu manifold with h′ ̸= 0.

Proof. By hypothesis we have φV = 0. Operating this with φ gives V = η(V )ξ,
i.e., V = Fξ, where F is a smooth function. Taking covariant derivative along
arbitrary vector field X of the last equation and inserting it in (2) we obtain

S(X,Y ) +
1

2
[(XF )η(Y ) + (Y F )η(X)] + Fg(h′X,Y )

− (
F 2

m
+ F )η(X)η(Y ) = (λ− F )g(X,Y ).(34)

Replacing X by ξ in (34) yields

1

2
(Y F ) = [λ+

F 2

m
− 2nκ− 1

2
(ξF )]η(Y )(35)

for any vector field X on M . Contracting (32) and using Lemma 4.1, we get

ξF = (2n+ 1)λ− 2n(κ− 2n) +
F 2

m
− 2nF.(36)

Replacing Y by ξ in (35) and combining it with (36) gives F = λ+2n. Inserting
(35) in (34) and using it in Lemma 4.1, we obtain

{2λ+
F 2

m
− F − 2nκ+ 2n− (ξF )}η(X)η(Y ) + λg(h′X,Y ) = 0.(37)

Replacing X by h′X in (37) implies λ(κ + 1)g(φX,φY ) = 0. Since h′ ̸= 0
and κ < −1, we get λ = 0 and using it in F = λ + 2n gives F = 2n. In a
consequence of this in (36) we get κ = 2n

m , a contradiction. This completes the
proof. □

Now using the above lemmas and proposition we proved the following:

Theorem 4.3. Let M2n+1(φ, ξ, η, g) be a (κ, µ)′-almost Kenmotsu manifold
with h′ ̸= 0. If g admits a closed generalized m-quasi-Einstein metric, then we
get one of the following:

1. M2n+1 is locally isometric to Hn+1(−4)× Rn.
2. M2n+1 is locally isometric to the warped product

Hn+1(α)×f Rn, Bn+1(α′)×f ′ Rn,

where Hn+1(α) is the hyperbolic space of constant curvature α = −1− 2m
n −m2

n2 ,

Bn+1(α′) is a space of constant curvature α′ = −1 + 2m
n − m2

n2 , f = ce(1−
m
n )t

and f ′ = c′e(1+
m
n )t, where c, c′ are positive constants.
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Proof. Since V ♭ is closed, Eq. (2) implies

∇XV = λX +
1

m
g(X,V )V −QX.(38)

Making use of the relation R(X,Y )V = ∇X∇Y V −∇Y ∇XV −∇[X,Y ]V in (38)
we get

R(X,Y )V = (Xλ)Y − (Y λ)X + (∇Y Q)X − (∇XQ)Y

+
λ

m
{g(Y, V )X − g(X,V )Y }+ 1

m
{g(X,V )QY − g(Y, V )QX}.(39)

Taking an inner product of (39) with ξ and using Lemma 4.4 of [25] we obtain

g(R(X,Y )V, ξ) = (Xλ)η(Y )− (Y λ)η(X)

+ g(QφhY,X)− g(QφhX, Y )

+
(λ− 2nκ)

m
{g(Y, V )η(X)− g(X,V )η(Y )}.(40)

Contracting (39) and making use of the fact that scalar curvature is constant
yields

(m− 1)

m
S(Y, V ) = −2n(Y λ) +

1

m
(2nλ− r)g(Y, V ).(41)

Taking an inner product of (30) with V and inserting it in (40) we get

(ξλ)ξ −Dλ− 1

m
{λ− (2n+m)κ}φ2V + 2h′V = 0.(42)

Operating by φ in (42) yields

1

m
{λ− (2n+m)κ}φV − φDλ+ 2φh′V = 0.(43)

Making use of (33) in (41) and operating the obtained expression by φ we get

{2nλ− r + 2n(m− 1)}φV − 2nmφDλ+ 2n(m− 1)φh′V = 0.(44)

Combining (43) and (44) we get

[2n(λ+m− 1)− r − n(m− 1)

m
{λ− (2n+m)κ}]φV − n(1 +m)φDλ = 0

implies

[2n(λ+m− 1)− r − n(m− 1)

m
{λ− (2n+m)κ}]V − n(1 +m)Dλ ∈ Rξ.

Therefore we can write

Dλ = αV + sξ,(45)

where

α =
1

n(m+ 1)
[2n(λ+m− 1)− r − n(m− 1)

m
{λ− (2n+m)κ}]
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and s is a smooth function on M . Inserting (45) in (42) gives

(ξλ)ξ − αV − sξ − 1

m
{λ− (2n+m)κ}φ2V + 2h′V = 0.(46)

Operating (46) by h′ we get

1

m
{λ− (2n+m)κ− αm}h′V + 2(κ+ 1)φ2V = 0.

Inserting the last equation in (46) we obtain

4(κ+ 1)φ2V =
1

m
[λ− (2n+m)κ− αm]

× [(ξλ)ξ − αV − sξ − 1

m
{λ− (2n+m)κ}φ2V ],(47)

then operating (47) by φ and using Proposition 4.2, we get

[λ− (2n+m)κ− αm]2 + 4m2(κ+ 1) = 0(48)

implies λ is constant. Replacing Y by ξ in (41) and taking λ as constant, gives

[λ− r

2n
− κ(m− 1)]η(V ) = 0.(49)

So we get either η(V ) = 0 or λ− r
2n − κ(m− 1) = 0.

Case-I: Suppose η(V ) = 0. Then taking covariant derivative along ξ and
using (38) gives λ = 2nκ. Inserting this in (48) we get κ = −2. Without loss
of generality, we may choose ν = 1. In consequence of this in Theorem 5.1 [24]
we get

R(Xν , Yν)Zν = −4[g(Yν , Zν)Xν − g(Xν , Zν)Yν ],

R(X−ν , Y−ν)Z−ν = 0

for any Xν , Yν , Zν ∈ [ν]′ and X−ν , Y−ν , Z−ν ∈ [−ν]′. Making use of the fact
that µ = −2 it follows from Proposition 4.1 [12] and Proposition 4.3 [12] that
K(X, ξ) = −4 for any X ∈ [ν]′ and K(X, ξ) = 0 for any X ∈ [−ν]′. As
shown in [12] that the distribution [ξ]⊕ [ν]′ is integrable with totally geodesic
leaves and the distribution [−ν]′ is integrable with total umbilical leaves by
H = −(1 − ν)ξ, where H is the mean curvature vector field for the leaves of
[−ν]′ immersed in M2n+1. Taking ν = 1, then the two distribution [ξ] ⊕ [ν]′

and [−ν]′ are both integrable with totally geodesic leaves immersed in M2n+1.
Hence M2n+1 is locally isometric to Hn+1(−4)× Rn.

Case-II: If λ− r
2n −κ(m− 1) = 0, then inserting the value of scalar curvature

from Lemma 4.1 gives λ = mκ− 2n. Using this in (48) implies κ = −1− m2

n2 .
By applying Dileo-Pastore [12] result we complete the proof. □

Remark 4.4. When V = Df , it is clear that V ♭ is closed. Therefore if a
non-normal (κ, µ)′-almost Kenmotsu manifold admits a generalized m-quasi-
Einstein structure (g, f,m, λ), then we get similar results as in Theorem 4.3.
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As a particular case of Theorem 4.3, for m = ∞ we easily obtain Theorem 3.1
[29].

Let U1 be the open subset of a 3-dimensional almost Kenmotsu manifold
M3 such that h ̸= 0 and U2 the open subset of M3 which is defined by U2 =
{p ∈ M3 : h = 0 in a neighbourhood of p}. Therefore U1 ∪ U2 is an open and
dense subset of M3 and there exists a local orthonormal basis {e1 = e, e2 =
φe, e3 = ξ} of three smooth unit eigenvectors of h for any point p ∈ U1 ∪ U2.
On U1 we may set he1 = ϑe1 and he2 = −ϑe2, where ϑ is a positive function.

Lemma 4.5 ([9]). On U1 we have

∇ξξ = 0, ∇ξe = aφe, ∇ξφe = −ae,

∇eξ = e− ϑφe, ∇ee = −ξ − bφe, ∇eφe = ϑξ + be,

∇φeξ = −ϑe+ φe, ∇φee = ϑξ + cφe, ∇φeφe = −ξ − ce,

where a, b, c are smooth functions.

From Lemma 4.5, the poisson brackets for {e1 = e, e2 = φe, e3 = ξ} are as
follows: 

[e3, e1] = (a+ ϑ)e2 − e1,

[e1, e2] = be1 − ce2,

[e2, e3] = (a− ϑ)e1 + e2.

(50)

Then the expression for Ricci operator are as follows:

Lemma 4.6. The Ricci operator Q with respect to the local basis {ξ, e, φe} on
U1 can be written as

Qξ = −2(ϑ2 + 1)ξ − (φe(ϑ) + 2ϑb)e− (e(ϑ) + 2ϑc)φe,

Qe = −(φe(ϑ) + 2ϑb)ξ − (A+ 2ϑa)e+ (ξ(ϑ) + 2ϑ)φe,

Qφe = −(e(ϑ) + 2ϑc)ξ + (ξ(ϑ) + 2ϑ)e− (A− 2ϑa)φe,

where we set A = e(c) + b2 + c2 + φe(b) + 2 for simplicity.

Before proceeding to the main result, we recollect a few basic notions of
harmonic vector fields. Perrone [26] characterized the harmonicity of an almost
Kenmotsu manifold. Let (Mn, g) be a Riemannian manifold and (T 1M, gs) its
unit tangent sphere bundle furnished with the well-known standard Sasakian
metric gs. If M is compact, then the energy E(V ) is defined as the energy of
the corresponding map V from (M, g) into (T 1M, gs) by

E(V ) =
1

2

∫
M

||dV ||2dvg =
m

2
V ol(M, g) +

1

2

∫
M

||∇V ||2dvg,

where E indicates the energy function and ∇ being the Levi-Civita connection
of g. V , a unit vector field is named harmonic if it is a critical point for E
defined on the set of all unit vector fields Ψ1(M), that is

∆̄V − ||∇V ||2V = 0,
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where ∆̄ indicates the rough Laplacian, that is, ∆̄V = −tr∇2V . The critical
point condition still specifies a harmonic vector field even though M is non-
compact. A Kenmotsu 3-manifold’s Reeb vector field is always harmonic. Now
we give the subsequent definition (see [30]).

Definition. An almost Kenmotsu 3-manifold with harmonic Reeb vector field
or equivalently, the Reeb vector field is an eigenvector field of the Ricci operator,
is called almost Kenmotsu 3-H-manifold.

Now we state and prove the following:

Theorem 4.7. If a 3-dimensional almost Kenmotsu 3-H-manifold with h′ ̸=
0 admits a generalized m-quasi-Einstein (g, f,m, λ) structure whose potential
function is constant along the Reeb vector field, then it is Einstein or is locally
isometric to a non-unimodular Lie group with a left-invariant almost Kenmotsu
structure.

Proof. For an almost Kenmotsu 3-H-manifold from Lemma 4.6, we have

e(ϑ) = −2ϑc, φe(ϑ) = −ϑb.(51)

By our assumption, since potential function is constant along the Reeb vector
field, we can write

Df = f1e+ f2φe(52)

for smooth functions f1 = f(e) and f2 = φe(f). Substituting X = ξ in (10)
and using Lemma 4.5, Lemma 4.6 and (52) gives

ξf1 − af2 = 0,

af1 + ξ(f2) = 0,

λ = 2(ϑ2 + 1).

(53)

Again, putting X = e in (10) and then using Lemma 4.5, Lemma 4.6 and (52)
gives 

e(f1) + bf2 = λ+
f2
1

m −A− 2ϑa,

ϑf2 − f1 = 0,

e(f2)− bf1 = f1f2
m − ξ(ϑ)− 2ϑ.

(54)

Similarly, for X = φe, we get
φe(f1)− cf2 = f1f2

m − ξ(ϑ)− 2ϑ,

φe(f2) + cf1 = λ+
f2
2

m +A− 2aϑ,

ϑf1 − f2 = 0.

(55)

Comparing the second argument of (54) and third argument of (55), we get
(ϑ2 − 1)f2 = 0. If f2 = 0, then third argument of (55) implies f1 = 0, then
(52) gives Df = 0, that is, f is constant.
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For the case f2 ̸= 0, we have ϑ = 1. In consequence, second argument of
(54) and third argument of (55) gives f1 = f2. Moreover, taking ϑ = 1 in (51),
we get b = c = 0. Also, first and second equation of (53) gives a = 0 when
f1 = f2. Inserting the above values in (50), we get

[e3, e1] = e2 − e1, [e1, e2] = 0, [e2, e3] = −e1 + e2.

Using Milnor’s result [23], we can conclude that M3 is locally isometric to a
non-unimodular Lie group with a left-invariant almost Kenmotsu structure.
This completes the proof. □

In consequence of Theorem 4.7, we can state the following corollary.

Corollary 4.8. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a
non-trivial generalized m-quasi-Einstein (g, f,m, λ) structure whose potential
function is constant along the Reeb vector field, then it is locally isometric to
either the hyperbolic space H3(−1) or the Riemannian product H2(−4)× R.

Proof. We shall divide the prove into two cases:

Case-I: When h = 0, then M is a Kenmotsu manifold. Then we have

QX = (
r

2
+ 1)X − (

r

2
+ 3)η(X)ξ.(56)

By assumption, ξf = 0. Replacing X = ξ in (10) then taking inner product
with ξ gives λ = −2n under our assumptions. In consequence, (7) gives ξr = 0.
Since ξr = −2(r + 6), we get r = −6 which reduces (56) to QX = −2X.
Clearly, M3 is conformally flat.

Case-II: When h ̸= 0, then by Theorem 4.7, we have a = b = c = 0. From
Lemma 4.6, we see that r = −2(ϑ2 + 1) − 2A. Making use of the fact that
a = b = c = 0 implies r = −8. It is easy to see that M3 is conformally flat.

Applying Wang’s theorem ([30, Theorem 1.6]), we can conclude that M3

is locally isometric to either the hyperbolic space H3(−1) or the Riemannian
product H2(−4)× R. □

Corollary 4.9. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a
non-trivial m-quasi-Einstein (g, f,m, λ) structure whose potential function is
constant along the Reeb vector field, then either it is locally isometric to the
hyperbolic space H3(−1) or the Riemannian product H2(−4)× R.

Next, we constructed an example of almost Kenmotsu manifold admitting a
generalized m-quasi-Einstein structure.

Example 4.10. Let (N, J, ḡ) be a strictly almost Kähler Einstein manifold.
We set η = dt, ξ = ∂

∂t and the tensor field φ is defined on R×f N by φX = JX
for vector field X on N and φX = 0 if X is tangent to R. Consider a metric
g = g0 + σ2ḡ, where σ2 = ce2t, g0 is the Euclidean metric on R and c is a
positive constant. Then it is easy to verify that the warped product R ×σ N ,
σ2 = ce2t, with the structure (φ, ξ, η, g) is an almost Kenmotsu manifold [11].
Since N is Einstein S = −2ng. We define a smooth function f(x, t) = t2.
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then it is easy to verify that the warped product R ×σ N , σ2 = ce2t admits a
generalized m-quasi-Einstein structure (g, f,m, λ) with λ = 2

m (m(1−n)−2t2).
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