Bull. Korean Math. Soc. **60** (2023), No. 3, pp. 717–732 https://doi.org/10.4134/BKMS.b220349 pISSN: 1015-8634 / eISSN: 2234-3016

GENERALIZED *m*-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

Mohan Khatri and Jay Prakash Singh

ABSTRACT. The goal of this paper is to analyze the generalized *m*-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized *m*-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space $\mathbb{H}^{2n+1}(-1)$ or a warped product $\widetilde{M} \times_{\gamma} \mathbb{R}$ under certain conditions. Next, we proved that a $(\kappa, \mu)'$ -almost Kenmotsu manifold with $h' \neq 0$ admitting a closed generalized *m*-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized *m*-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space $\mathbb{H}^{3}(-1)$ or the Riemannian product $\mathbb{H}^{2}(-4) \times \mathbb{R}$.

1. Introduction

The study of Einstein manifolds and their several generalizations have received a lot of attention in recent years. A Ricci soliton is a Riemannian metric, which satisfies

$$\frac{1}{2}\mathcal{L}_V g + S - \lambda g = 0,$$

where \mathcal{L}_V denotes the Lie-derivative operator along a potential vector field V, S is the Ricci tensor of g and λ is a constant. Clearly, a trivial Ricci soliton is an Einstein metric with V zero or Killing. When V = df, i.e., a gradient of smooth function f, it is called a gradient Ricci soliton (see [4]).

Extending the notion of the *m*-Bakry-Emery Ricci tensor, Case [5] introduced an interesting generalization of gradient Ricci soliton and Einstein manifold. The *m*-Bakry-Emery Ricci tensor is defined as follows:

$$S_f^m = S + \nabla^2 f - \frac{1}{m} df \otimes df,$$

O2023Korean Mathematical Society

Received May 20, 2022; Revised August 31, 2022; Accepted October 11, 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 53C15, 53C25, 53D10.

Key words and phrases. Hyperbolic space, quasi-Einstein, Kenmotsu manifold, Einstein, warped product.

where the integer m satisfies $0 < m \leq \infty$, $\nabla^2 f$ denotes the Hessian form of the smooth function f. The m-Bakery-Emery Ricci tensor arises from the warped product $(M \times N, \bar{g})$ of two Riemannian manifolds (M^n, g) and (N^m, h) with the Riemannian metric $\bar{g} = g + e^{-\frac{2f}{m}}h$. We called a quadruple (g, f, m, λ) on a Riemannian manifold (M, g), m-quasi-Einstein structure if it satisfies the equation

(1)
$$S + \nabla^2 f - \frac{1}{m} df \otimes df = \lambda g$$

for some $\lambda \in \mathbb{R}$. Notice that for $m = \infty$, Eq. (1) gives gradient Ricci soliton and for constant f, it becomes Einstein. The *m*-quasi-Einstein structure has been deeply studied by [5, 6, 17].

Later on Barros-Ribeiro Jr. [1] and Limoncu [22] generalized and studied equation (1) independently, by considering a 1-form V^{\flat} instead of df, which satisfied

(2)
$$S + \frac{1}{2}\mathcal{L}_V g - \frac{1}{m}V^{\flat} \otimes V^{\flat} = \lambda g,$$

where V^{\flat} is the 1-form associated with the potential vector field V. In particular, if the 1-form V^{\flat} is closed, we called (2) closed *m*-quasi-Einstein structure. When $V \equiv 0$, the *m*-quasi-Einstein structure is said to be trivial, and in this case, the metric becomes an Einstein metric. Ghosh [13, 16] studied contact metric manifolds with quasi-Einstein structures (1) and (2). Recently, Chen [8] studied quasi-Einstein structure (g, V, m, λ) in almost cosympletic manifolds and De et al. [10] studied quasi-Einstein metric (g, f, m, λ) in the context of three-dimensional cosympletic manifolds.

Extending the notion of quasi-Einstein structure, Catino [7] introduced and studied the concept of the generalized quasi-Einstein manifold. A particular case of this was proposed by Barros-Ribeiro Jr. [2] which is defined as follows:

A Riemannian manifold (M^n, g) is said to be generalized *m*-quasi-Einstein (g, f, m, λ) if there exists a function $\lambda : M^n \to \mathbb{R}$ such that

(3)
$$S + \nabla^2 f - \frac{1}{m} df \otimes df = \lambda g.$$

Notice that for $m = \infty$, (3) reduces to gradient Ricci almost soliton. Also when df is replaced by V^{\flat} , then we called (3) generalized *m*-quasi-Einstein (g, V, m, λ) structure. Moreover if $V \equiv 0$, then it is said to be trivial. Hu et al. [18,19] studied generalized *m*-quasi-Einstein metric (g, f, m, λ) with restriction on Ricci curvature and scalar curvature. Ghosh [14] considered generalized *m*-quasi-Einstein metric (g, f, m, λ) in Sasakian and *K*-contact manifolds and showed that it is isometric to the unit sphere \mathbb{S}^{2n+1} .

In continuation, we studied the generalized m-quasi-Einstein metric in the framework of almost contact manifolds, namely Kenmotsu and almost Kenmotsu manifolds. The paper is organized as follows: After preliminaries, in Section 3 we analyzed generalized m-quasi-Einstein structure in Kenmotsu

manifold. Firstly we constructed some examples of Kenmotsu manifold admitting generalized *m*-quasi-Einstein structure. Next, we showed that if a complete Kenmotsu manifold whose Reeb vector field leaves the scalar curvature invariant, admits a generalized *m*-quasi-Einstein structure (g, f, m, λ) , then it is locally isometric to a hyperbolic space $\mathbb{H}^{2n+1}(-1)$ or warped product $\widetilde{M} \times_{\gamma} \mathbb{R}$. Moreover, a generalized *m*-quasi-Einstein structure whose potential vector field is pointwise collinear with Reeb vector field is studied. Section 4 is devoted to the study of closed generalized *m*-quasi-Einstein metric in $(\kappa, \mu)'$ almost Kenmotsu manifold. Finally, we looked at 3-dimensional non-Kenmotsu almost Kenmotsu manifold admitting a generalized *m*-quasi-Einstein structure and showed that it is locally isometric to a non-unimodular Lie group with a left-invariant almost Kenmotsu structure.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M is called an almost contact metric manifold if it admits a (1, 1)-tensor field φ , a unit vector field ξ (called the Reeb vector field) and a 1-form η such that

(4)
$$\varphi^2 X = -X + \eta(X)\xi, \ \eta(X) = g(X,\xi)$$

for all vector field X on M. A Riemannian metric g is said to be an associated (or compatible) metric if it satisfies

(5)
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all vector fields X, Y on M. An almost contact manifold $M^{2n+1}(\varphi, \xi, \eta)$ together with a compatible metric g is known as almost contact metric manifold (see Blair [3]).

An almost Kenmotsu manifold is defined as an almost contact metric manifold if it satisfies $d\eta = 0$ and $\Phi = 2\eta \wedge \Phi$, where the fundamental 2-form Φ of the almost contact metric manifold is defined by $\Phi(X,Y) = g(X,\varphi Y)$ for any vector fields X, Y on M (see [28]). On the product $M^{2n+1} \times \mathbb{R}$ of an almost contact metric manifold M^{2n+1} and \mathbb{R} , there exists an almost complex structure J defined by

$$J(X, f\frac{d}{dt}) = \left(\varphi X - f\xi, \eta(X)\frac{d}{dt}\right),$$

where X denotes a vector field tangent to M^{2n+1} , t is the coordinate of \mathbb{R} and f is a C^{∞} -function on $M^{2n+1} \times \mathbb{R}$. If J is integrable, then almost contact metric structure on M^{2n+1} is said to be normal. A normal almost Kenmotsu manifold is called a Kenmotsu manifold (see [21]). An almost Kenmotsu manifold is a Kenmotsu manifold if and only if

$$(\nabla_X \varphi)Y = g(\varphi X, Y)\xi - \eta(Y)\varphi X$$

for any vector fields X, Y on M^{2n+1} . On a Kenmotsu manifold the following holds [21]:

(6)
$$\nabla_X \xi = X - \eta(X)\xi,$$

(7)
$$R(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

for any vector fields X, Y on M^{2n+1} . Here R is the curvature tensor of gand Q the Ricci operator associated with the (1, 2) Ricci tensor S given by S(X,Y) = g(QX,Y) for all vector fields X, Y on M^{2n+1} . It is shown that a Kenmotsu manifold is locally a warped product $I \times_f N^{2n}$, where I is an open interval with coordinate $t, f = ce^t$ is the warping function for some positive constant c and N^{2n} is a Kählerian manifold [21].

On an almost Kenmotsu manifold the following formula is valid [11, 12]:

(9)
$$\nabla_X \xi = -\varphi^2 X - \varphi h X$$

for any vector field X on M^{2n+1} . We define two operators h and ℓ by $h = \frac{1}{2}\mathcal{L}_{\xi}\varphi$ and $\ell = R(\cdot,\xi)\xi$ on M^{2n+1} satisfying $h\xi = h'\xi = 0$, Tr.h = Tr.h' = 0, $h\varphi = -\varphi h$ where $h' = h \cdot \varphi$ and Tr. denotes trace.

3. Normal almost Kenmotsu manifold

In this section, we studied Kenmotsu manifold admitting generalized mquasi-Einstein structure. Firstly, we construct some examples of Kenmotsu manifold admitting generalized m-quasi-Einstein metric.

Example 3.1. Let (N, J, g_0) be a Kähler manifold of dimension 2n. Consider the warped product $(M, g) = (\mathbb{R} \times_{\sigma} N, dt^2 + \sigma^2 g_0)$, where t is the coordinate on \mathbb{R} . We set $\eta = dt$, $\xi = \frac{\partial}{\partial t}$ and the tensor field φ is defined on $\mathbb{R} \times_{\sigma} N$ by $\varphi X = JX$ for vector field X on N and $\varphi X = 0$ if X is tangent to \mathbb{R} . Then the warped product $\mathbb{R} \times_{\sigma} N, \sigma^2 = ce^{2t}$ with the structure (φ, ξ, η, g) is a Kenmotsu manifold [21]. In particular, if we take $N = \mathbb{CH}^{2n}$, then N being Einstein, the Ricci tensor of M becomes S = -2ng. Further we define a smooth function $f(t) = ke^t, k > 0$. Then it is easy to verify that (M, f, g, λ) is a generalized m-quasi-Einstein structure with $\lambda = \frac{ke^t}{m}(m - ke^t) - 2n$ on $\mathbb{R} \times_{\sigma} \mathbb{CH}^{2n}$.

Similarly, a large group of examples of generalized *m*-quasi-Einstein metric on Kenmotsu manifold can be constructed by taking different potential functions on the warped product.

Example 3.2. Consider the warped product $\mathbb{R} \times_{\sigma} \mathbb{H}^n$ with metric $g = dt^2 + \sigma^2 g_0$, where g_0 is the standard metric on the hyperbolic space \mathbb{H}^n (see [15]). Let $\sigma(t) = \cosh t$. Then the warped product becomes Einstein manifold with Ricci tensor S = -ng and it admits a generalized *m*-quasi-Einstein structure $(\mathbb{R} \times_{\sigma} \mathbb{H}^n, f, g, \lambda)$ with $f(x, t) = \sinh t$ and $\lambda(x, t) = \sinh t - \frac{\cosh^2 t}{m} - n$.

Example 3.3. Let $M^{2n+1} = \mathbb{R} \times_{\cosh t} \mathbb{CH}^{2n}$ with metric $g = dt^2 + (\cosh^2 t)g_0$, where g_0 is the standard metric on the complex hyperbolic space \mathbb{CH}^{2n} (see [15]). Then M^{2n+1} becomes an Einstein manifold with the Ricci tensor $S^M =$ -2ng (see Lemma 1.1 of [27]). Consider a function $f(x,t) = \sinh t$, then $(M^{2n+1}, f, g, \lambda)$ is a generalized *m*-quasi-Einstein structure if $\lambda = \sinh t - \frac{\cosh^2 t}{m} - 2n$.

Next we state and proved the following result:

Theorem 3.4. If the metric of a Kenmotsu manifold $M^{2n+1}(\varphi, \xi, \eta, g)$ represents a generalized m-quasi-Einstein structure (g, f, m, λ) , then it is η -Einstein, provided $1 + \frac{\xi(f)}{m} \neq 0$. Moreover, if M^{2n+1} is complete and Reeb vector field ξ leaves the scalar curvature invariant, then we have

- (a) If f has a critical point, then M is isometric to the hyperbolic space $\mathbb{H}^{2n+1}(-1)$.
- (b) If a function f has no critical points, then M is isometric to the warped product M̃×_γ ℝ of a complete Riemannian manifold M̃²ⁿ and the real line ℝ with warped function γ : ℝ → ℝ such that γ̈ − γ = 0, γ > 0.

Proof. From (3), we have

(10)
$$\nabla_X Df = \lambda X + \frac{1}{m}g(X, Df)Df - QX.$$

Taking the covariant derivative of (10) along arbitrary vector field Y, we get

(11)
$$\nabla_Y \nabla_X Df = (Y\lambda)X + \lambda(\nabla_Y X) + \frac{1}{m} \{g(X, \nabla_Y Df)Df + g(X, Df)(\nabla_Y Df)\} - (\nabla_Y Q)X - Q(\nabla_Y X).$$

Making use of (10) and (11) in the relation

$$R(X,Y)Df = \nabla_X \nabla_Y Df - \nabla_Y \nabla_X Df - \nabla_{[X,Y]} Df$$

we obtain

(12)

$$R(X,Y)Df = (X\lambda)Y - (Y\lambda)X + (\nabla_Y Q)X - (\nabla_X Q)Y + \frac{\lambda}{m}[g(Y,Df)X - g(X,Df)Y] + \frac{1}{m}[g(X,Df)QY - g(Y,Df)QX].$$

Taking an inner product of (12) with ξ and using (8) yields

$$g(R(X,Y)Df,\xi)$$

= $(X\lambda)\eta(Y) - (Y\lambda)\eta(X) + g((\nabla_Y Q)\xi,X)$
(13) $-g((\nabla_X Q)\xi,Y) + \frac{(\lambda+2n)}{m}[g(Y,Df)\eta(X) - g(X,Df)\eta(Y)].$

Taking an inner product of (7) with Df and inserting it in the last equation (13) we obtain

$$(X\lambda)\eta(Y) - (Y\lambda)\eta(X) + g((\nabla_Y Q)\xi, X) - g((\nabla_X Q)\xi, Y)$$

(14)
$$+ \frac{(\lambda + 2n + m)}{m} [g(Y, Df)\eta(X) - g(X, Df)\eta(Y)] = 0.$$

Replacing Y by ξ in (14) and making use of the relation $(\nabla_\xi Q)Y=-2QY-4nY$ (see Lemma 2 of [15]) we get

(15)
$$\sigma Df - mD\lambda = \{\sigma(\xi f) - m(\xi \lambda)\}\xi,$$

where $\sigma = m + \lambda + 2n$. Contracting (12) along arbitrary vector field X gives

(16)
$$\frac{(m-1)}{m}S(Y,Df) = \frac{1}{2}(Yr) - 2n(Y\lambda) + \frac{1}{m}(2n\lambda - r)g(Y,Df).$$

Replacing Y by ξ and using (8) in (16) we get

(17)
$$\frac{1}{m}(2n\sigma - 4n^2 - r - 2n)(\xi f) - 2n(\xi \lambda) + \frac{1}{2}(\xi r) = 0.$$

Also on the Kenmotsu manifold, we have $\xi r = -2(r + 2n(2n + 1))$ (Lemma 2 of [15]). Inserting this in the last equation infer

(18)
$$\frac{2n}{m}[\sigma(\xi f) - m(\xi \lambda)] = \{r + 2n(2n+1)\}\{1 + \frac{(\xi f)}{m}\}$$

Replacing Y by ξ in (12) and using the relation $R(X,\xi)Y = g(X,Y)\xi - \eta(Y)X$, we obtain

$$\frac{1}{m}g(X,\sigma Df - mD\lambda)\xi = \frac{(\sigma - 2n)}{m}(\xi f)X - (\xi\lambda)X - (1 + \frac{\xi f}{m})QX - 2nX.$$

Combining (15), (18) and (19) we obtain the following relation

(20)
$$(1+\frac{\xi f}{m})(\frac{r}{2n}+2n+1)\eta(X)\xi = (1+\frac{\xi f}{m})\{(\frac{r}{2n}+1)X-QX\}.$$

If possible take $1 + \frac{\xi f}{m} \neq 0$, then from the last equation we get

(21)
$$QX = (1 + \frac{r}{2n})X - (\frac{r}{2n} + 2n + 1)\eta(X)\xi$$

for any vector field X on M. Therefore, M is η -Einstein.

Suppose that ξ leaves the scalar curvature r invariant, i.e., $\xi r = 0$. Consequently, r = -2n(2n + 1). By virtue of this in (21) we get QX = -2nX, i.e., M is Einstein. Inserting r = -2n(2n + 1) in (18) gives $\sigma(\xi f) - m(\xi \lambda) = 0$ and hence (15) implies $D\lambda = \frac{\sigma}{m}Df$. Now we consider a function $u = e^{-\frac{f}{m}}$ on M. Then it follows $Du = -\frac{u}{m}Df$. Taking covariant derivative of the forgoing expression along arbitrary vector field X we get

(22)
$$\nabla_X Df - \frac{1}{m}g(X, Df)Df = -\frac{m}{u}\nabla_X Du.$$

722

(19)

Using (22) along with the fact that QX = -2nX, (10) yields

(23)
$$\nabla_X Du = -\frac{(\lambda + 2n)u}{m} X.$$

Also we have $(\lambda + m + 2n)Df = mD\lambda$, simplifying it gives $D(\lambda u) = -(m + 2n)Du$ which implies $\lambda u = -(m + 2n)u + k$, k is a constant. Inserting the forgoing relations in (23) we get

$$\nabla_X Du = (u - \frac{k}{m})X.$$

Applying Kanai's theorem [20], we conclude that if f has a critical point, then M is isometric to the hyperbolic space $\mathbb{H}^{2n+1}(-1)$ or if f is without critical points, then M is isometric to the warped product $\widetilde{M} \times_{\gamma} \mathbb{R}$ of a complete Riemannian manifold \widetilde{M}^{2n} and the real line \mathbb{R} with warped function $\gamma : \mathbb{R} \to \mathbb{R}$ such that $\ddot{\gamma} - \gamma = 0, \gamma > 0$.

Remark 3.5. Suppose $1 + \frac{\xi f}{m} = 0$ in some open set \mathcal{O} of M. Then $\xi f = -m$, since Kenmotsu manifold is locally isometric to the warped product $(-\epsilon, \epsilon) \times_{ce^t} N$, where N is a Kähler manifold of dimension 2n and $(-\epsilon, \epsilon)$ is an open interval [21]. Using the local parametrization: $\xi = \frac{\partial}{\partial t}$ then we have $\frac{\partial f}{\partial t} = -m$ hence the potential function is f = -mt, t > 0.

Theorem 3.6. If a Kenmotsu manifold admits a non-trivial generalized mquasi-Einstein structure (g, V, m, λ) whose potential vector field is pointwise collinear with the Reeb vector field ξ , then it is η -Einstein.

Proof. Suppose potential vector field V is pointwise collinear with the Reeb vector field ξ . Then $V = F\xi$, where F is a smooth function. Differentiating covariantly along arbitrary vector field X of $V = F\xi$ and using (6) we get

(24)
$$\nabla_X V = (XF)\xi + F(-\varphi^2 X - \varphi hX).$$

Inserting (24) in (2) gives

(25)
$$S(X,Y) + \frac{1}{2}[(XF)\eta(Y) + (YF)\eta(X)] + Fg(h'X,Y) - (\frac{F^2}{m} + F)\eta(X)\eta(Y) = (\lambda - F)g(X,Y)$$

for all vector fields X, Y. Replacing X, Y by ξ in (25) and using (8) we get $\xi F = \lambda + 2n + \frac{F^2}{m}$. Further taking Y as ξ and using the last expression in (25) we obtain

(26)
$$XF = (\lambda + \frac{F^2}{m} + 2n)\eta(X).$$

Contracting (25) and inserting in the above equation (26), yields

(27)
$$r = 2n(\lambda - F - 1).$$

In consequence of (26) and (27), Equation (25) reduces to the following form:

(28)
$$QX = (\frac{r}{2n} + 1)X - (\frac{r}{2n} + 2n + 1)\eta(X)\xi$$

for any vector field X. Thus manifold is η -Einstein. This completes the proof.

Suppose F is constant. Then (26) gives $\lambda = -2n - \frac{F^2}{m}$. This in (27) implies r is constant. Hence $\xi r = 0$ which implies r = -2n(2n + 1). Inserting the values of r and λ in (27) gives F = -m which further implies $\lambda = -m - 2n$. Hence we can state the following:

Corollary 3.7. If a Kenmotsu manifold admits a non-trivial generalized mquasi-Einstein structure (g, V, m, λ) whose potential vector is a constant multiple of Reeb vector field ξ , then it is Einstein, i.e., QX = -2nX with $\lambda = -m - 2n$.

4. Non-normal almost Kenmotsu manifold

An almost Kenmotsu manifold $M^{2n+1}(\varphi, \xi, \eta, g)$ is said to be a generalized (κ, μ) -almost Kenmotsu manifold if ξ belongs to the generalized (κ, μ) -nullity distribution, i.e.,

(29)
$$R(X,Y)\xi = \kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY]$$

for all vector fields X, Y on M, where κ, μ are smooth functions on M. An almost Kenmotsu manifold $M^{2n+1}(\varphi, \xi, \eta, g)$ is said to be a generalized $(\kappa, \mu)'$ -almost Kenmotsu manifold if ξ belongs to the generalized $(\kappa, \mu)'$ -nullity distribution, i.e.,

(30)
$$R(X,Y)\xi = \kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)h'X - \eta(X)h'Y]$$

for all vector fields X, Y on M, where κ, μ are smooth functions on M and $h' = h \circ \varphi$ (see [12]). Moreover if both κ and μ are constants in (30), then M is called a $(\kappa, \mu)'$ -almost Kenmotsu manifold (see [12, 24, 31]). On generalized (κ, μ) or $(\kappa, \mu)'$ -almost Kenmotsu manifold with $h \neq 0$ (equivalently, $h' \neq 0$), the following relations hold [12]:

(31)
$$h'^2 = (\kappa + 1)\varphi^2, \ h^2 = (\kappa + 1)\varphi^2,$$

It follows from (31) that $\kappa \leq -1$ and $\nu = \pm \sqrt{-\kappa - 1}$, where ν is an eigenvalue corresponding to eigenvector $X \in \mathcal{D}$ ($\mathcal{D} = \operatorname{Ker}(\eta)$) of h'. The equality holds if and only if h = 0 (equivalently, h' = 0). Thus $h' \neq 0$ if and only if $\kappa < -1$.

Lemma 4.1 ([31]). Let $M^{2n+1}(\varphi, \xi, \eta, g)$ be a generalized $(\kappa, \mu)'$ -almost Kenmotsu manifold with $h' \neq 0$. For n > 1, the Ricci operator Q of M can be expressed as

$$QX = -2nX + 2n(\kappa + 1)\eta(X)\xi - [\mu - 2(n-1)h']X$$

for any vector field X on M. Further, if κ and μ are constants and $n \ge 1$, then $\mu = -2$ and hence

(33)
$$QX = -2nX + 2n(\kappa + 1)\eta(X)\xi - 2nh'X$$

for any vector field X on M. In both cases, the scalar curvature of M is $2n(\kappa - 2n)$.

Proposition 4.2. There does not exist generalized m-quasi-Einstein structure with $\varphi V = 0$ in $(\kappa, \mu)'$ -almost Kenmotsu manifold with $h' \neq 0$.

Proof. By hypothesis we have $\varphi V = 0$. Operating this with φ gives $V = \eta(V)\xi$, i.e., $V = F\xi$, where F is a smooth function. Taking covariant derivative along arbitrary vector field X of the last equation and inserting it in (2) we obtain

(34)

$$S(X,Y) + \frac{1}{2}[(XF)\eta(Y) + (YF)\eta(X)] + Fg(h'X,Y)$$

$$-(\frac{F^2}{m} + F)\eta(X)\eta(Y) = (\lambda - F)g(X,Y).$$

Replacing X by ξ in (34) yields

0

(35)
$$\frac{1}{2}(YF) = [\lambda + \frac{F^2}{m} - 2n\kappa - \frac{1}{2}(\xi F)]\eta(Y)$$

for any vector field X on M. Contracting (32) and using Lemma 4.1, we get

(36)
$$\xi F = (2n+1)\lambda - 2n(\kappa - 2n) + \frac{F^2}{m} - 2nF.$$

Replacing Y by ξ in (35) and combining it with (36) gives $F = \lambda + 2n$. Inserting (35) in (34) and using it in Lemma 4.1, we obtain

(37)
$$\{2\lambda + \frac{F^2}{m} - F - 2n\kappa + 2n - (\xi F)\}\eta(X)\eta(Y) + \lambda g(h'X, Y) = 0.$$

Replacing X by h'X in (37) implies $\lambda(\kappa + 1)g(\varphi X, \varphi Y) = 0$. Since $h' \neq 0$ and $\kappa < -1$, we get $\lambda = 0$ and using it in $F = \lambda + 2n$ gives F = 2n. In a consequence of this in (36) we get $\kappa = \frac{2n}{m}$, a contradiction. This completes the proof.

Now using the above lemmas and proposition we proved the following:

Theorem 4.3. Let $M^{2n+1}(\varphi, \xi, \eta, g)$ be a $(\kappa, \mu)'$ -almost Kenmotsu manifold with $h' \neq 0$. If g admits a closed generalized m-quasi-Einstein metric, then we get one of the following:

1. M^{2n+1} is locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

2. M^{2n+1} is locally isometric to the warped product

$$\mathbb{H}^{n+1}(\alpha) \times_f \mathbb{R}^n, \ \mathbb{B}^{n+1}(\alpha') \times_{f'} \mathbb{R}^n,$$

where $\mathbb{H}^{n+1}(\alpha)$ is the hyperbolic space of constant curvature $\alpha = -1 - \frac{2m}{n} - \frac{m^2}{n^2}$, $\mathbb{B}^{n+1}(\alpha')$ is a space of constant curvature $\alpha' = -1 + \frac{2m}{n} - \frac{m^2}{n^2}$, $f = ce^{(1-\frac{m}{n})t}$ and $f' = c'e^{(1+\frac{m}{n})t}$, where c, c' are positive constants. *Proof.* Since V^{\flat} is closed, Eq. (2) implies

(38)
$$\nabla_X V = \lambda X + \frac{1}{m}g(X,V)V - QX$$

Making use of the relation $R(X,Y)V = \nabla_X \nabla_Y V - \nabla_Y \nabla_X V - \nabla_{[X,Y]} V$ in (38) we get

$$R(X,Y)V = (X\lambda)Y - (Y\lambda)X + (\nabla_Y Q)X - (\nabla_X Q)Y$$

(39)
$$+ \frac{\lambda}{m} \{g(Y,V)X - g(X,V)Y\} + \frac{1}{m} \{g(X,V)QY - g(Y,V)QX\}$$

Taking an inner product of (39) with ξ and using Lemma 4.4 of [25] we obtain

(40)

$$g(R(X,Y)V,\xi) = (X\lambda)\eta(Y) - (Y\lambda)\eta(X) + g(Q\varphi hY,X) - g(Q\varphi hX,Y) + \frac{(\lambda - 2n\kappa)}{m} \{g(Y,V)\eta(X) - g(X,V)\eta(Y)\}.$$

Contracting (39) and making use of the fact that scalar curvature is constant yields

(41)
$$\frac{(m-1)}{m}S(Y,V) = -2n(Y\lambda) + \frac{1}{m}(2n\lambda - r)g(Y,V).$$

Taking an inner product of (30) with V and inserting it in (40) we get

(42)
$$(\xi\lambda)\xi - D\lambda - \frac{1}{m}\{\lambda - (2n+m)\kappa\}\varphi^2 V + 2h'V = 0.$$

Operating by φ in (42) yields

(43)
$$\frac{1}{m} \{\lambda - (2n+m)\kappa\}\varphi V - \varphi D\lambda + 2\varphi h' V = 0.$$

Making use of (33) in (41) and operating the obtained expression by φ we get (44) $\{2n\lambda - r + 2n(m-1)\}\varphi V - 2nm\varphi D\lambda + 2n(m-1)\varphi h'V = 0.$

Combining (43) and (44) we get

$$[2n(\lambda+m-1)-r-\frac{n(m-1)}{m}\{\lambda-(2n+m)\kappa\}]\varphi V - n(1+m)\varphi D\lambda = 0$$

implies

$$[2n(\lambda+m-1)-r-\frac{n(m-1)}{m}\{\lambda-(2n+m)\kappa\}]V-n(1+m)D\lambda\in\mathbb{R}\xi.$$

Therefore we can write

(45)
$$D\lambda = \alpha V + s\xi,$$

where

$$\alpha = \frac{1}{n(m+1)} [2n(\lambda + m - 1) - r - \frac{n(m-1)}{m} \{\lambda - (2n+m)\kappa\}]$$

and s is a smooth function on M. Inserting (45) in (42) gives

(46)
$$(\xi\lambda)\xi - \alpha V - s\xi - \frac{1}{m}\{\lambda - (2n+m)\kappa\}\varphi^2 V + 2h'V = 0$$

Operating (46) by h' we get

$$\frac{1}{m} \{\lambda - (2n+m)\kappa - \alpha m\} h' V + 2(\kappa+1)\varphi^2 V = 0.$$

Inserting the last equation in (46) we obtain

(47)
$$4(\kappa+1)\varphi^2 V = \frac{1}{m} [\lambda - (2n+m)\kappa - \alpha m] \\ \times [(\xi\lambda)\xi - \alpha V - s\xi - \frac{1}{m} \{\lambda - (2n+m)\kappa\}\varphi^2 V],$$

then operating (47) by φ and using Proposition 4.2, we get

(48)
$$[\lambda - (2n+m)\kappa - \alpha m]^2 + 4m^2(\kappa + 1) = 0$$

implies λ is constant. Replacing Y by ξ in (41) and taking λ as constant, gives

(49)
$$[\lambda - \frac{r}{2n} - \kappa(m-1)]\eta(V) = 0.$$

So we get either $\eta(V) = 0$ or $\lambda - \frac{r}{2n} - \kappa(m-1) = 0$.

Case-I: Suppose $\eta(V) = 0$. Then taking covariant derivative along ξ and using (38) gives $\lambda = 2n\kappa$. Inserting this in (48) we get $\kappa = -2$. Without loss of generality, we may choose $\nu = 1$. In consequence of this in Theorem 5.1 [24] we get

$$R(X_{\nu}, Y_{\nu})Z_{\nu} = -4[g(Y_{\nu}, Z_{\nu})X_{\nu} - g(X_{\nu}, Z_{\nu})Y_{\nu}],$$

$$R(X_{-\nu}, Y_{-\nu})Z_{-\nu} = 0$$

for any $X_{\nu}, Y_{\nu}, Z_{\nu} \in [\nu]'$ and $X_{-\nu}, Y_{-\nu}, Z_{-\nu} \in [-\nu]'$. Making use of the fact that $\mu = -2$ it follows from Proposition 4.1 [12] and Proposition 4.3 [12] that $K(X,\xi) = -4$ for any $X \in [\nu]'$ and $K(X,\xi) = 0$ for any $X \in [-\nu]'$. As shown in [12] that the distribution $[\xi] \oplus [\nu]'$ is integrable with totally geodesic leaves and the distribution $[-\nu]'$ is integrable with total umbilical leaves by $H = -(1 - \nu)\xi$, where H is the mean curvature vector field for the leaves of $[-\nu]'$ immersed in M^{2n+1} . Taking $\nu = 1$, then the two distribution $[\xi] \oplus [\nu]'$ and $[-\nu]'$ are both integrable with totally geodesic leaves immersed in M^{2n+1} . Hence M^{2n+1} is locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

Case-II: If $\lambda - \frac{r}{2n} - \kappa(m-1) = 0$, then inserting the value of scalar curvature from Lemma 4.1 gives $\lambda = m\kappa - 2n$. Using this in (48) implies $\kappa = -1 - \frac{m^2}{n^2}$. By applying Dileo-Pastore [12] result we complete the proof.

Remark 4.4. When V = Df, it is clear that V^{\flat} is closed. Therefore if a non-normal $(\kappa, \mu)'$ -almost Kenmotsu manifold admits a generalized *m*-quasi-Einstein structure (g, f, m, λ) , then we get similar results as in Theorem 4.3. As a particular case of Theorem 4.3, for $m = \infty$ we easily obtain Theorem 3.1 [29].

Let \mathcal{U}_1 be the open subset of a 3-dimensional almost Kenmotsu manifold M^3 such that $h \neq 0$ and \mathcal{U}_2 the open subset of M^3 which is defined by $\mathcal{U}_2 = \{p \in M^3 : h = 0 \text{ in a neighbourhood of } p\}$. Therefore $\mathcal{U}_1 \cup \mathcal{U}_2$ is an open and dense subset of M^3 and there exists a local orthonormal basis $\{e_1 = e, e_2 = \varphi e, e_3 = \xi\}$ of three smooth unit eigenvectors of h for any point $p \in \mathcal{U}_1 \cup \mathcal{U}_2$. On \mathcal{U}_1 we may set $he_1 = \vartheta e_1$ and $he_2 = -\vartheta e_2$, where ϑ is a positive function.

Lemma 4.5 ([9]). On \mathcal{U}_1 we have

$$\begin{aligned} \nabla_{\xi}\xi &= 0, \ \nabla_{\xi}e = a\varphi e, \ \nabla_{\xi}\varphi e = -ae, \\ \nabla_{e}\xi &= e - \vartheta\varphi e, \ \nabla_{e}e = -\xi - b\varphi e, \ \nabla_{e}\varphi e = \vartheta\xi + be, \\ \nabla_{\varphi e}\xi &= -\vartheta e + \varphi e, \ \nabla_{\varphi e}e = \vartheta\xi + c\varphi e, \ \nabla_{\varphi e}\varphi e = -\xi - ce, \end{aligned}$$

where a, b, c are smooth functions.

From Lemma 4.5, the poisson brackets for $\{e_1 = e, e_2 = \varphi e, e_3 = \xi\}$ are as follows:

(50)
$$\begin{cases} [e_3, e_1] = (a + \vartheta)e_2 - e_1, \\ [e_1, e_2] = be_1 - ce_2, \\ [e_2, e_3] = (a - \vartheta)e_1 + e_2. \end{cases}$$

Then the expression for Ricci operator are as follows:

Lemma 4.6. The Ricci operator Q with respect to the local basis $\{\xi, e, \varphi e\}$ on \mathcal{U}_1 can be written as

$$\begin{aligned} Q\xi &= -2(\vartheta^2 + 1)\xi - (\varphi e(\vartheta) + 2\vartheta b)e - (e(\vartheta) + 2\vartheta c)\varphi e, \\ Qe &= -(\varphi e(\vartheta) + 2\vartheta b)\xi - (A + 2\vartheta a)e + (\xi(\vartheta) + 2\vartheta)\varphi e, \\ Q\varphi e &= -(e(\vartheta) + 2\vartheta c)\xi + (\xi(\vartheta) + 2\vartheta)e - (A - 2\vartheta a)\varphi e, \end{aligned}$$

where we set $A = e(c) + b^2 + c^2 + \varphi e(b) + 2$ for simplicity.

Before proceeding to the main result, we recollect a few basic notions of harmonic vector fields. Perrone [26] characterized the harmonicity of an almost Kenmotsu manifold. Let (M^n, g) be a Riemannian manifold and (T^1M, g_s) its unit tangent sphere bundle furnished with the well-known standard Sasakian metric g_s . If M is compact, then the energy E(V) is defined as the energy of the corresponding map V from (M, g) into (T^1M, g_s) by

$$E(V) = \frac{1}{2} \int_{M} ||dV||^2 dv_g = \frac{m}{2} Vol(M,g) + \frac{1}{2} \int_{M} ||\nabla V||^2 dv_g$$

where E indicates the energy function and ∇ being the Levi-Civita connection of g. V, a unit vector field is named harmonic if it is a critical point for E defined on the set of all unit vector fields $\Psi^1(M)$, that is

$$\bar{\Delta}V - ||\nabla V||^2 V = 0,$$

where $\overline{\Delta}$ indicates the rough Laplacian, that is, $\overline{\Delta}V = -tr\nabla^2 V$. The critical point condition still specifies a harmonic vector field even though M is non-compact. A Kenmotsu 3-manifold's Reeb vector field is always harmonic. Now we give the subsequent definition (see [30]).

Definition. An almost Kenmotsu 3-manifold with harmonic Reeb vector field or equivalently, the Reeb vector field is an eigenvector field of the Ricci operator, is called almost Kenmotsu 3-H-manifold.

Now we state and prove the following:

Theorem 4.7. If a 3-dimensional almost Kenmotsu 3-H-manifold with $h' \neq 0$ admits a generalized m-quasi-Einstein (g, f, m, λ) structure whose potential function is constant along the Reeb vector field, then it is Einstein or is locally isometric to a non-unimodular Lie group with a left-invariant almost Kenmotsu structure.

Proof. For an almost Kenmotsu 3-H-manifold from Lemma 4.6, we have

(51)
$$e(\vartheta) = -2\vartheta c, \ \varphi e(\vartheta) = -\vartheta b.$$

By our assumption, since potential function is constant along the Reeb vector field, we can write

$$(52) Df = f_1 e + f_2 \varphi e$$

for smooth functions $f_1 = f(e)$ and $f_2 = \varphi e(f)$. Substituting $X = \xi$ in (10) and using Lemma 4.5, Lemma 4.6 and (52) gives

(53)
$$\begin{cases} \xi f_1 - a f_2 = 0, \\ a f_1 + \xi(f_2) = 0, \\ \lambda = 2(\vartheta^2 + 1). \end{cases}$$

Again, putting X = e in (10) and then using Lemma 4.5, Lemma 4.6 and (52) gives

(54)
$$\begin{cases} e(f_1) + bf_2 = \lambda + \frac{f_1^2}{m} - A - 2\vartheta a, \\ \vartheta f_2 - f_1 = 0, \\ e(f_2) - bf_1 = \frac{f_1 f_2}{m} - \xi(\vartheta) - 2\vartheta. \end{cases}$$

Similarly, for $X = \varphi e$, we get

(55)
$$\begin{cases} \varphi e(f_1) - cf_2 = \frac{f_1 f_2}{m} - \xi(\vartheta) - 2\vartheta, \\ \varphi e(f_2) + cf_1 = \lambda + \frac{f_2^2}{m} + A - 2a\vartheta, \\ \vartheta f_1 - f_2 = 0. \end{cases}$$

Comparing the second argument of (54) and third argument of (55), we get $(\vartheta^2 - 1)f_2 = 0$. If $f_2 = 0$, then third argument of (55) implies $f_1 = 0$, then (52) gives Df = 0, that is, f is constant.

For the case $f_2 \neq 0$, we have $\vartheta = 1$. In consequence, second argument of (54) and third argument of (55) gives $f_1 = f_2$. Moreover, taking $\vartheta = 1$ in (51), we get b = c = 0. Also, first and second equation of (53) gives a = 0 when $f_1 = f_2$. Inserting the above values in (50), we get

$$[e_3, e_1] = e_2 - e_1, \ [e_1, e_2] = 0, \ [e_2, e_3] = -e_1 + e_2.$$

Using Milnor's result [23], we can conclude that M^3 is locally isometric to a non-unimodular Lie group with a left-invariant almost Kenmotsu structure. This completes the proof.

In consequence of Theorem 4.7, we can state the following corollary.

Corollary 4.8. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a non-trivial generalized m-quasi-Einstein (g, f, m, λ) structure whose potential function is constant along the Reeb vector field, then it is locally isometric to either the hyperbolic space $\mathbb{H}^3(-1)$ or the Riemannian product $\mathbb{H}^2(-4) \times \mathbb{R}$.

Proof. We shall divide the prove into two cases:

Case-I: When h = 0, then M is a Kenmotsu manifold. Then we have

(56)
$$QX = (\frac{r}{2} + 1)X - (\frac{r}{2} + 3)\eta(X)\xi.$$

By assumption, $\xi f = 0$. Replacing $X = \xi$ in (10) then taking inner product with ξ gives $\lambda = -2n$ under our assumptions. In consequence, (7) gives $\xi r = 0$. Since $\xi r = -2(r+6)$, we get r = -6 which reduces (56) to QX = -2X. Clearly, M^3 is conformally flat.

Case-II: When $h \neq 0$, then by Theorem 4.7, we have a = b = c = 0. From Lemma 4.6, we see that $r = -2(\vartheta^2 + 1) - 2A$. Making use of the fact that a = b = c = 0 implies r = -8. It is easy to see that M^3 is conformally flat.

Applying Wang's theorem ([30, Theorem 1.6]), we can conclude that M^3 is locally isometric to either the hyperbolic space $\mathbb{H}^3(-1)$ or the Riemannian product $\mathbb{H}^2(-4) \times \mathbb{R}$.

Corollary 4.9. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a non-trivial m-quasi-Einstein (g, f, m, λ) structure whose potential function is constant along the Reeb vector field, then either it is locally isometric to the hyperbolic space $\mathbb{H}^3(-1)$ or the Riemannian product $\mathbb{H}^2(-4) \times \mathbb{R}$.

Next, we constructed an example of almost Kenmotsu manifold admitting a generalized m-quasi-Einstein structure.

Example 4.10. Let (N, J, \bar{g}) be a strictly almost Kähler Einstein manifold. We set $\eta = dt$, $\xi = \frac{\partial}{\partial t}$ and the tensor field φ is defined on $\mathbb{R} \times_f N$ by $\varphi X = JX$ for vector field X on N and $\varphi X = 0$ if X is tangent to \mathbb{R} . Consider a metric $g = g_0 + \sigma^2 \bar{g}$, where $\sigma^2 = ce^{2t}$, g_0 is the Euclidean metric on \mathbb{R} and c is a positive constant. Then it is easy to verify that the warped product $\mathbb{R} \times_{\sigma} N$, $\sigma^2 = ce^{2t}$, with the structure (φ, ξ, η, g) is an almost Kenmotsu manifold [11]. Since N is Einstein S = -2ng. We define a smooth function $f(x, t) = t^2$. then it is easy to verify that the warped product $\mathbb{R} \times_{\sigma} N$, $\sigma^2 = ce^{2t}$ admits a generalized *m*-quasi-Einstein structure (g, f, m, λ) with $\lambda = \frac{2}{m}(m(1-n)-2t^2)$.

Acknowledgment. The first author is thankful to the Department of Science and Technology, New Delhi, India for financial support in the form of INSPIRE Fellowship (DST/INSPIRE Fellowship/2018/IF180830).

References

- A. Barros and E. Ribeiro, Jr., Integral formulae on quasi-Einstein manifolds and applications, Glasg. Math. J. 54 (2012), no. 1, 213-223. https://doi.org/10.1017/ S0017089511000565
- [2] A. Barros and E. Ribeiro, Jr., Characterizations and integral formulae for generalized m-quasi-Einstein metrics, Bull. Braz. Math. Soc. (N.S.) 45 (2014), no. 2, 325-341. https://doi.org/10.1007/s00574-014-0051-0
- [3] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, second edition, Progress in Mathematics, 203, Birkhäuser Boston, Ltd., Boston, MA, 2010. https: //doi.org/10.1007/978-0-8176-4959-3
- [4] H.-D. Cao, Recent progress on Ricci solitons, in Recent advances in geometric analysis, 1–38, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010.
- [5] J. Case, The nonexistence of quasi-Einstein metrics, Pacific J. Math. 248 (2010), no. 2, 277-284. https://doi.org/10.2140/pjm.2010.248.277
- [6] J. Case, Y.-J. Shu, and G. Wei, *Rigidity of quasi-Einstein metrics*, Differential Geom. Appl. 29 (2011), no. 1, 93–100. https://doi.org/10.1016/j.difgeo.2010.11.003
- [7] G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z.
 271 (2012), no. 3-4, 751-756. https://doi.org/10.1007/s00209-011-0888-5
- [8] X. Chen, Quasi-Einstein structures and almost cosymplectic manifolds, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 72, 14 pp. https://doi.org/10.1007/s13398-020-00801-x
- J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), suppl., 266-273. https://doi.org/10.1016/j.difgeo. 2014.05.002
- [10] U. C. De, S. K. Chaubey, and Y. J. Suh, Gradient Yamabe and gradient m-quasi Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18 (2021), no. 3, Paper No. 80, 14 pp. https://doi.org/10.1007/s00009-021-01720-w
- [11] G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 2, 343-354. http://projecteuclid.org/ euclid.bbms/1179839227
- [12] G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009), no. 1-2, 46–61. https://doi.org/10.1007/s00022-009-1974-2
- [13] A. Ghosh, Quasi-Einstein contact metric manifolds, Glasg. Math. J. 57 (2015), no. 3, 569–577. https://doi.org/10.1017/S0017089514000494
- [14] A. Ghosh, Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds, Ann. Polon. Math. 115 (2015), no. 1, 33–41. https://doi.org/ 10.4064/ap115-1-3
- [15] A. Ghosh, Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold, Carpathian Math. Publ. 11 (2019), no. 1, 56-69. https://doi.org/10.15330/ cmp.11.1.59-69
- [16] A. Ghosh, m-quasi-Einstein metric and contact geometry, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 3, 2587–2600. https://doi.org/10. 1007/s13398-019-00642-3

- [17] A. Ghosh, m-quasi-Einstein metrics satisfying certain conditions on the potential vector field, Mediterr. J. Math. 17 (2020), no. 4, Paper No. 115, 17 pp. https://doi.org/10. 1007/s00009-020-01558-8
- [18] Z. Hu, D. Li, and J. Xu, On generalized m-quasi-Einstein manifolds with constant scalar curvature, J. Math. Anal. Appl. 432 (2015), no. 2, 733-743. https://doi.org/10.1016/ j.jmaa.2015.07.021
- [19] Z. Hu, D. Li, and S. Zhai, On generalized m-quasi-Einstein manifolds with constant Ricci curvatures, J. Math. Anal. Appl. 446 (2017), no. 1, 843-851. https://doi.org/ 10.1016/j.jmaa.2016.09.019
- [20] M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math. 6 (1983), no. 1, 143-151. https://doi.org/10.3836/tjm/ 1270214332
- [21] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2)
 24 (1972), 93–103. https://doi.org/10.2748/tmj/1178241594
- [22] M. Limoncu, Modifications of the Ricci tensor and applications, Arch. Math. (Basel) 95 (2010), no. 2, 191–199. https://doi.org/10.1007/s00013-010-0150-0
- [23] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329. https://doi.org/10.1016/S0001-8708(76)80002-3
- [24] A. M. Pastore and V. Saltarelli, Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. J. Geom. 4 (2011), no. 2, 168–183. https://doi.org/10.4310/ sii.2011.v4.n2.a13
- [25] D. S. Patra, A. Ghosh, and A. Bhattacharyya, The critical point equation on Kenmotsu and almost Kenmotsu manifolds, Publ. Math. Debrecen 97 (2020), no. 1-2, 85–99.
- [26] D. Perrone, Almost contact metric manifolds whose Reeb vector field is a harmonic section, Acta Math. Hungar. 138 (2013), no. 1-2, 102–126. https://doi.org/10.1007/ s10474-012-0228-1
- [27] S. Pigola, M. Rigoli, M. Rimoldi, and A. G. Setti, *Ricci almost solitons*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) **10** (2011), no. 4, 757–799.
- [28] L. Vanhecke and D. Janssens, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1–27. http://projecteuclid.org/euclid.kmj/1138036310
- [29] Y. Wang, Gradient Ricci almost solitons on two classes of almost Kenmotsu manifolds, J. Korean Math. Soc. 53 (2016), no. 5, 1101–1114. https://doi.org/10.4134/JKMS. j150416
- [30] Y. Wang, Conformally flat almost Kenmotsu 3-manifolds, Mediterr. J. Math. 14 (2017), no. 5, Paper No. 186, 16 pp. https://doi.org/10.1007/s00009-017-0984-9
- [31] Y. Wang and X. Liu, On almost Kenmotsu manifolds satisfying some nullity distributions, Proc. Nat. Acad. Sci. India Sect. A 86 (2016), no. 3, 347-353. https: //doi.org/10.1007/s40010-016-0274-0

MOHAN KHATRI DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE MIZORAM UNIVERSITY AIZAWL-796004, MIZORAM, INDIA Email address: mohankhatri.official@gmail.com

JAY PRAKASH SINGH DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE MIZORAM UNIVERSITY AIZAWL-796004, MIZORAM, INDIA Email address: jpsmaths@gmail.com