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GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES
OF ALMOST KENMOTSU MANIFOLDS

YANING WANG

ABSTRACT. Let (M2?7t1 ¢,€,n,9) be a (k, u)'-almost Kenmotsu mani-
fold with k¥ < —1 which admits a gradient Ricci almost soliton (g, f, ),
where A is the soliton function and f is the potential function. In this
paper, it is proved that A is a constant and this implies that M?2"+1 is
locally isometric to a rigid gradient Ricci soliton H*+1(—4) x R™, and
the soliton is expanding with A = —4n. Moreover, if a three dimensional
Kenmotsu manifold admits a gradient Ricci almost soliton, then either
it is of constant sectional curvature —1 or the potential vector field is
pointwise colinear with the Reeb vector field.

1. Introduction

It is well-known that a Ricci soliton on a Riemannian manifold (M, g) (see
Hamilton [13]) is defined by

1
(1.1) SLve+S =g

for a vector field V and a certain constant A on M and it is denoted by (g, V, ),
where S denotes the Ricci tensor. In general, V' and A are called the potential
vector field and soliton constant, respectively. Obviously, if the potential vector
field is either a Killing vector field or vanishing, then a Ricci soliton reduces
to an Einstein metric (that is, the Ricci tensor is a constant multiple of the
Riemannian metric if the dimension of the manifold is greater than 2). In 1982,
Hamilton [12] introduced the notion of Ricci flow to find a canonical metric on
a smooth manifold. The Ricci flow is an evolution equation for metrics on a
Riemannian manifold defined by

0]
5,9 (t) = =25

It is worth mentioning that Ricci solitons with complete potential vector
field correspond to self-similar solutions to the Ricci flow. Moreover, if the
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potential vector field V' is the gradient of some function f on M, then (1.1)
becomes

(1.2) VVf+S =g

and is called a gradient Ricci soliton. According to Perelman [16], we know
that a Ricci soliton on a compact manifold is always a gradient Ricci soliton.

Recently, the notion of Ricci soliton was generalized to Ricci almost soliton
on a Riemannian manifold (M, g) (see Pigola et al. [19]). Generally, (1.1) is
called a Ricci almost soliton if ) is a variable function on M. In addition, a Ricci
almost soliton is said to be a gradient Ricci almost soliton if the potential vector
field V' is the gradient of some function f on M and it is denoted by (g, f, A),
where X is called the soliton function. A Ricci almost soliton is said to be
shrinking, steady or expanding according as A > 0, A = 0 or A < 0, respectively.
Otherwise, it will be called indefinite. It is worth pointing out that Barros et
al. [1] proved that a Ricci almost soliton on a compact manifold is a gradient
Ricci almost soliton provided that the scalar curvature is a constant.

The studies of Ricci solitons on almost contact metric manifolds were initi-
ated by R. Sharma [20]. In the paper, the author improved some results proved
by Boyer and Galicki [3]. More precisely, he obtained an odd-dimensional ana-
logue of the well-known Goldberg’s conjecture in the framework of contact
geometry. Recently, Ricci solitons on three dimensional Kenmotsu manifolds
and 7-Einstein Kenmotsu manifolds of dimension > 3 were studied by Ghosh
[9], Cho [5] and Ghosh [10], respectively. Generalizing some results shown in
[5, 9], the present author jointly with Liu in [23] studied Ricci solitons on three
dimensional 7-Einstein almost Kenmotsu manifolds. Moreover, the existences
of gradient Ricci solitons on (k, u)’-almost Kenmotsu manifolds were also in-
vestigated by the present author et al. [22].

We recall that Ghosh [11] and Sharma [21] recently obtained some results
concerning Ricci almost solitons on some types of contact metric manifolds,
which extended some earlier results proved by Sharma [20] and Cho and Sharma
[6]. Motivated by these results, we shall investigate gradient Ricci almost soli-
tons on three dimensional Kenmotsu manifolds and (k, u)’-almost Kenmotsu
manifolds with k < —1, respectively. We mainly generalize some results proved
by Wang et al. [22] and obtain some new examples of non-trivial gradient Ricci
almost solitons on three dimensional Kenmotsu manifolds.

This paper is organized as follows. In Section 2, we recall some fundamental
formulas and properties of almost Kenmotsu manifolds. In Section 3, we prove
that a gradient Ricci almost soliton on a (k, u)’-almost Kenmotsu manifold
with & < —1 is, in fact, a rigid gradient Ricci soliton and this extend some cor-
responding results shown in [22]. In Section 4, it is proved that a gradient Ricci
almost soliton on a three dimensional Kenmotsu manifold either is trivial, (i.e.,
an Einstein metric, and hence the Kenmotsu manifold is of constant sectional
curvature —1), or the potential vector field is pointwise colinear with the Reeb
vector field. Finally, we show that (g, 53¢, ) (where f3 is a variable function) on
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a three dimensional Kenmotsu manifold is a Ricci soliton if and only if 8 =0
(i.e., the trivial case). As a corollary of our main results, non-trivial gradient
Ricci almost solitons on a type of warped products are also introduced.

2. Almost Kenmotsu manifolds

If on a (2n+1)-dimensional smooth manifold M2"*?! there exist a (1, 1)-type
tensor field ¢, a global vector field ¢ and a 1-form 7 such that

(2.1) > =—-id+n®¢& nE) =1,

where id denotes the identity endomorphism, then we say that the triplet
(¢,€,m) is an almost contact structure on M?"T1 and ¢ is called the char-
acteristic or the Reeb vector field (see Blair [2]). It follows from relation (2.1)
that ¢(§) = 0, no ¢ = 0 and rank(¢) = 2n. In general, a smooth manifold
M?"*+1 endowed with an almost contact structure is called an almost contact
manifold and therefore it is denoted by (M?"*1 ¢ & 7). It is well-known that
a smooth manifold M?"+! admits an almost contact structure if and only if
the structure group of the tangent bundle of M?"*! reduces to U(n) x 1.

If on an almost contact manifold (M?"*1 ¢, & n) there exists a Riemannian
metric g satisfying

(2.2) 9(¢X,9Y) = g(X,Y) —n(X)n(Y)

for any vector fields X,Y, then the metric is said to be compatible with the
almost contact structure. A smooth manifold furnished with an almost contact
structure and a compatible Riemannian metric is said to be an almost contact
metric manifold and it is denoted by (M?"*1 ¢, & 0, g).

The fundamental 2-form ® of an almost contact metric manifold M?2"*! is
defined by ®(X,Y) = g(X,¢Y) for any vector fields X and Y. We define an
almost complex structure J on the product manifold M?"*! x R by

d d
where X denotes the vector field tangent to M?"*!, t is the coordinate of R and
f is a smooth function defined on the product manifold M2"+! x R. An almost
contact structure is said to be normal if the above almost complex structure is
integrable. According to Blair [2], the normality of an almost contact structure
is expressed by [¢, ¢] = —2dn @ £, where [¢, ¢] denotes the Nijenhuis tensor of
¢ which is defined by

[0, 0)(X,Y) = ¢°[X, Y] + [6X, 0Y] — ¢[¢X, Y] — ¢[X, ¢Y]
for any vector fields X and Y on M?"*1,

According to Janssens and Vanhecke [14], an almost contact metric manifold
satisfying dn = 0 and d® = 2n A ® is called an almost Kenmotsu manifold. An
almost Kenmotsu manifold with a normal almost contact structure is said to
be a Kenmotsu manifold.
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On an almost Kenmotsu manifold M2+, we set | = R(-,£)¢, h = 3L¢¢
and B/ = h o ¢, where R denotes the curvature tensor of M?"+! and L is the
Lie differentiation. The above these tensor fields play key roles in the studies
of geometry of almost Kenmotsu manifolds. According to [7, 8], the three
(1,1)-type tensor fields I, h and k' are all symmetric and satisfy the following
equations.

(2.3) hé =16 =0, tth=trh' =0, ho+ ¢h =0,
(2.4) Vx§=X-n(X)§+ X,
(2.5) Plp — 1 =2(h* — ¢%),

for any vector field X on M?"*! where V and tr denote the Levi-Civita con-
nection of g and the trace operator, respectively.

3. Gradient Ricci almost solitons on (k, 1)’-almost Kenmotsu
manifolds with k£ < —1

By a (k, p)’ -almost Kenmotsu manifold, we mean an almost Kenmotsu man-
ifold (M?"*1 ¢ & 1, g) with the characteristic vector field ¢ belonging to the
(k, p)’-nullity distribution (see Dileo and Pastore [8]), that is,

(3.1)  R(X,)Y)¢=k(n(Y)X = n(X)Y)+ pn(Y)h'X —n(X)W'Y)

for any vector fields X and Y € X(M), where k,u € R, h’ = ho ¢ and X(M)
denotes the Lie algebra of all vector fields on M?"*!. Also, we denote by D
the distribution defined by D = ker. In relation (3.1), substituting ¥ with £
gives that | = —k¢? + ph’. Putting this relation into equation (2.5) and using
(2.3), we obtain

(3.2) R = (k +1)¢°
By (2.1), it follows from relation (3.2) that & < —1. Obviously, by (3.2), we
see that the tensor field A’ vanishes if and only if £ = —1. In the present section,

we aim to investigate the existences of the gradient Ricci almost solitons on a
(k, n)’-almost Kenmotsu manifold with k& < —1. According to [8, Proposition
4.1], on a (k, u)’-almost Kenmotsu manifold with ¥ < —1, we have y = —2.
We also observe from (3.2) that k < —1 if and only if h # 0 (or, equivalently,
h' # 0). The following result is deduced directly from Dileo and Pastore [8,
Proposition 4.2].

Lemma 3.1 ([25, Lemma 3.2]). Let (M*"*1 ¢, £ n,9) be a (k,p)'-almost Ken-
motsu manifold with h' # 0. Then the Ricci operator of M?"*! is given by

(3.3) Q = —2nid + 2n(k + 1)n ® & — 2nh/,

where k < —1. Moreover, the scalar curvature of M*"*1 is 2n(k — 2n).
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Now we consider an almost Kenmotsu manifold (M2 +1 ¢, £, n,g) which
admits a gradient Ricci almost soliton (g, f, ), i.e.,

(3.4) VxDf =-0QX + X
for any X € X(M), where X is the soliton function on M?"*1. Then, it follows
from (3.4) that
R(X,Y)Df =VxVyDf -VyVxDf —VixyDf
= (VyQ)X — (VxQ)Y = Y(N)X + X(\)Y
for any X,Y € X(M), where Df denotes the gradient of the potential function

f. Applying Lemma 3.1, relations (3.4) and (3.5), we obtain the following
result.

(3.5)

Theorem 3.1. Let (M?"1 ¢, & n,g) be a (k,u) -almost Kenmotsu manifold
with k < —1 which admits a gradient Ricci almost soliton (g, f,\). Then, the
soliton is expanding with A = —4n and M?"T1 is locally isometric to a rigid
gradient Ricci soliton H"T1(—4) x R™. Moreover, the potential vector field is
tangential to the Euclidean factor R™.

Proof. In case of k < —1, taking the covariant derivative of equation (3.3) along
any vector field Y € X(M) and using (2.4) we have

(VyQ)X = 2n(k + Dn(X)(Y +1'Y) — 2n(Vyh')X
+2n(k + 1)(g(X,Y) — 2n(X)n(Y) + g(M' X, Y))E
for any X,Y € X(M). Using the above equation in (3.5) we obtain
R(X,Y)Df =2n(k+ 1)n(X)(Y +2'Y) = 2n(k + 1)n(Y)(X + ' X)
(36) —2n(Vyh)X 4+ 2n(Vxh)Y =Y (N)X + X(\)Y

for any X, Y € X(M). In view of equations (2.3), (2.4) and (3.2), it follows
from (3.6) that

(3.7) G(R(X,Y)DS,€) = —n(X)Y () + 5(¥)X ()

for any X,Y € X(M). On the other hand, using (3.1) we have

9(R(X,Y)E, Df) = kn(Y)X(f) = kn(X)Y (f)
—29(Y)g(h'Df, X) + 2n(X)g(W'DJ,Y)

for any X, Y € X(M), where we have used u = —2. Comparing (3.7) with (3.8)
yields that

(V)X (kf+X) =n(X)Y (kf + ) = 29(Y)g(W'Df, X) + 2n(X)g(K'Df,Y) = 0
for any X,Y € X(M), and substituting Y with £ in this equation we get

(3.9) DX = —kDf + £(NE + kE(f)E + 21/ DF.

According to Corollary 4.1 of Dileo and Pastore [§], we obtain that a (k, u)’-
almost Kenmotsu manifold M?"*+1 with k < —1 is C'R-integrable (i.e., the

(3.8)
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induced almost complex structure from ¢ on D is integrable). In addition, it
follows from relation (3.3) that Q¢ = 2nk¢. Thus, applying Lemma 3.4 of
Wang and Liu [24] we have that tr(Vxh') =0 and (divh')X = 2n(k + 1)n(X)
for any X € X(M). Therefore, contracting Y in (3.6) gives that

S(X,Df)=—-2nX(\)
for any X € X(M), and comparing this relation with (3.3) we obtain
(3.10) DX=Df —(k+1)&(f)E+hDf.
Obviously, it follows (3.9) and (3.10) that
(k+1)Df — (2k + DE()E — ENE — W'D = 0.

Taking into account the assumption k& < —1 and equation (3.2), then the action
of ’ on the above equation gives that

(3.11) WDf=—-Df+&(f)E.
In view of the action of A’ on (3.11), using again equation (3.2) we obtain
(k+1)(Df —&(f)§) = W'Df.

Comparing the above relation with (3.11) gives that either k = —2 or Df =
E(f)€. Next, we discuss the above two cases as follows.

Case i: Df = £(f)€. Taking the covariant derivative of Df = £(f)¢ along
any vector field X € X(M) and using (2.4) we get

VxDf = X(E(f))E+ (X = &(mX)E+ (N X
for any X € X(M). Putting the above equation into (3.4) yields that
(3.12) QX = (A= &(MNX + (E(NHmX) = X&) - S(HNX
for any X € X(M). Comparing (3.12) with (3.3) gives that
(2n+ A =&)X + (2n - £(F)P'X
+ (E(H)n(X) = X(E(f)) = 2n(k + )n(X))§ =0

for any X € X(M). By the action of A’ on equation (3.13) and making use of
(2.3) and (3.2), we obtain

(2n+ A = &(fNHNX = (k+ 1)(2n = £()X + (k+1)(2n — £(f))n(X)§ =0

for any X € X(M). Contracting X in the above equation and using (2.3) we
have

(3.13)

2n(k+1)(2n = ¢£(f)) =0
and hence by the assumption & < —1 we obtain &(f) = 2n. Using &(f) = 2n
in (3.13) gives
(3.14) AX — 2nkn(X)€ =0
for any X € X(M). Thus, by considering a vector field X orthogonal to £ in
equation (3.14) we have that A = 0. Therefore, (3.14) becomes 2nkn(X)¢ =0
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for any X € X(M). It follows that k = 0, this contradicts the assumption
k< -1

Case ii: £k = —2. In view of £ = p = —2, according to Corollary 4.2
and Proposition 4.1 of Dileo and Pastore [8] we obtain that M?"*! is locally
isometric to the Riemannian product H"*1(—4) x R". In fact, from Petersen
and Wylie [17, 18] we state that the product H"*1(—4) x R" is a rigid gradient

Ricci soliton. Next, we need to show that A is a constant. Using £ = —2 and
(3.11) in equation (3.9) we obtain

(3.15) DX =¢(M\)E.

Putting (3.15) and (3.11) into (3.10) gives that

(3.16) €(2f —\) = 0.

In this context, it follows from equations (3.3), (3.4) and (3.16) that

(317) X = S(6,6) + 9(VeDF, ) = —4n + SE(E(N).

By relation h'? = —¢?, we shall denote by [1]’ and [—1]’ the distributions of
the eigenvectors of h' orthogonal to £ with eigenvalues 1 and —1, respectively.
Also, from h'? = —¢? we may consider a local orthonormal ¢-frame {¢, e;, e, }
for 1 <1i < nwithe; € [1) and ¢e; € [-1]'. From (3.11), we see that D f has no
components on the distribution [1)'. Thus, we write Df = >""" | Bide; + £(f)E,
where 3;, 1 < i < n, are smooth functions on M?2"*+!. Using this and equation
(3.16) in (3.4) we have

QX = <)\ — %E()\)) X - ZX(&)(?@Z' - Zﬁz‘v){(b@i
i=1 i=1

1 1
~ LEONX + (M) - X(EM))E
for any X € X(M). Combining the above equation with (3.3) yields that

<2n + A %5(/\)) X — ZX(ﬂi)Qbei - Zﬂivx¢€i
(3.18) =1 =t

+ (20 3600) 11X + G amn(X) + €00n(X) - X (e =0

for any X € X(M). According to the proof of Proposition 4.1 of [8], we have
that V., ¢e; € [-1]' for any e; € [1]', 1 < j < n. Consequently, substituting X
with e; € [1]" in (3.18) we obtain that

(3.19) A=\ — 4n.

Finally, applying (3.19) in (3.17) we have A = —4n, and this means that
the gradient Ricci soliton is expanding. By using A = —4n in equation (3.16)
we get £(f) = 0 and hence from (3.11) we have ' Df = —Df. Actually, by
Theorem 4.2 of [8], on product space H"t1(—4) x R" the factor R" is the
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integral submanifold of the distribution [—1]’. Then, h'Df = —Df implies
that the gradient of the potential function Df is tangential to the Euclidean
factor R™. This completes the proof. O

Remark 3.1. Theorem 1.2 of Wang et al. [22] is a direct corollary of the above
Theorem 3.1.

Remark 3.2. We observe that some sufficient conditions for a compact manifold
to be a rigid gradient Ricci soliton were presented by Petersen and Wylie
[17, 18]. However, in our Theorem 3.1, the strictly almost Kenmotsu manifold
H"T!(—4) xR™ (a rigid gradient Ricci soliton) is non-compact due to divé = 2n
(this can be deduced from equations (2.3) and (2.4)).

4. Gradient Ricci almost solitons on three dimensional
Kenmotsu manifolds

It is proved in Dileo and Pastore [7] that the almost contact metric structure
of an almost Kenmotsu manifold is normal if and only if the foliations of the
distribution D are Kéhlerian and the (1,1)-type tensor field h vanishes. In
particular, as a consequence, we get immediately that a three dimensional
almost Kenmotsu manifold is a Kenmotsu manifold if and only if h = 0. In this
section, we aim to investigate the existences of gradient Ricci almost solitons
on a three dimensional Kenmotsu manifold.

On a Kenmotsu manifold of dimension 3, by using h = 0 in equation (2.4)
we have V& = —¢?, and this implies that

(4.1) R(X, YY), =—nY)X +n(X)Y

for any X,Y € X(M) and hence by contracting Y in (4.1) we get Q€ = —2¢.
We present the following useful result with its proof as follows.

Lemma 4.1. Let (M3,$,£,1,9) be a three dimensional Kenmotsu manifold.
Then we have

(4.2) §(r) = =2(r +6),
where r denotes the scalar curvature of M?.

Proof. On any three dimensional Riemannian manifold (M3, g), since the Weyl
conformal tensor vanishes, then the following formula holds.

R(X,Y)Z = g(Y, 2)QX - g(X, Z)QY + (Y, Z)X — S(X, Z)Y
(4.3) r

for any vector fields X,Y,Z on M3. Replacing Y = Z by ¢ in the above
equation and making use of (4.1) we have

(4.4) Q:(g+1)id—(g+3)n®£.
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This means that M?3 is an 7-Einstein manifold. Taking the covariant derivative
of relation (4.4) along any vector field and using Q& = —2¢ we get
1

(VxQ)Y = XY — (5 +3) n(¥)X — SX (¥

_ (g n 3) 9(X,Y)E+ (r+ 6)n(X)n(Y)E

for any X,Y € X(M). Next, let us recall that the following well-known formula
holds on any Riemannian manifolds:

(4.5)

1
div@ = §gradr.
Making using of equation (4.5) in the above formula and taking into account
V& = —¢? we obtain
§(r)n(Y) = =2(r +6)n(Y)
for any vector field Y on M?3. Substituting Y with & in the above equation we
obtain (4.2). This completes the proof. O

Lemma 4.2. Let (M3,4,€,1,9) be a three dimensional Kenmotsu manifold
which admits a Ricci almost soliton. Then we have

(4.6) AX = 4(A+2) = £(E(N),
where A denote the Laplacian operator.

Proof. Suppose that on a three dimensional Kenmotsu manifold M3 there ex-
ists a Ricci almost soliton (g, V, \), where X is the soliton function on M3. Tt
follows from (1.1) and (4.4) that

(4.7) Lyg=0C2A—r—2)g+ (r+6)nxmn.

Taking the covariant derivative of the above equation along any vector field
X € X(M), we obtain

(4.8) VxLyg=X(@2A—r)g+ X(r)n@n+ (r+6)(Vxn) @n+n® (Vxn))
for any X € X(M). According to Yano [26], we also have
(LvVxg—VxLyvg—Vx9)(Y,Z)
=—9(LvV)(X,Y), Z) —g((LvV)(X, 2),Y)
for any vector fields X,Y,Z € X(M). In view of the parallelism of the Rie-
mannian metric g, we get from the above relation that

(VXEVQ)(Yv Z) = g((ﬁvV)(X, Y)v Z) + g((ﬁvV)(X, Z)v Y)

for any vector fields X,Y,Z € X(M). Taking into account the symmetry
of LyV (that is, (LyV)(X,Y) = (LyV)(Y, X)), it follows from the above
equation that

29((£Vv)(X’ Y)’Z) = (VX‘CV!])(Ya Z) + (VY‘CVQ)(Z’X) - (VZ‘CV!])(X’ Y)
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for any X,Y,Z € X(M). Using (4.8) in the above equation we have
(LvV)(X,Y)

W) =X <)\ - %r) Y —l—}; <)\ - %r) X —1g(X, Y)DX + %g(X, Y)Dr

£ X (Y >§ ¥ Y( (X)E — (X )n(¥)Dr

+(r+6)g(X,Y)E = (r+6)n(X)n(Y)E

for any X,Y € X(M).

(4.10)  (LvV)(X, &) = XN+ ENX = n(X)DA+ (r +6)(X — n(X)S)

).

for any X € X(M
we obtain
(Vy Ly V)(X,§)
3

=~ DY OIX)E ~ G XEIMVIE 2+ 6)(g(X, Y) — n(X)n(Y))g

g(X, Vy D) + (;Y(r) +(r+6)nY)+ U(VyD)\)) X —(r+6nX)Y

Substituting Y with £ in (4.9) and using (4.2) gives that

Clearly, from equations (4.9) and (4.10) and Lemma 4.1

+ %X(T)Y —n(X)Vy DX\ — %g(X, Y)Dr + %n(X)n(Y)Dr

for any X,Y € X(M). Substituting the above equation into the following
relation (see Yano [26])

(LvR)(X,Y)Z = (VxLyvV)(Y,Z) = (Vy Ly V)(X, Z)
and using ¢(Vx DA, Y) = g(Vy DA, X), then we immediately obtain
(Lv R)(X,Y)E = Y (n(X)€ — X(r)n(Y )€ — n(Y)Vx DA+ n(X)Vy DA
+(X(r)+2(r+6)n(X)+n(VxDA)Y
—Y(r)+2(r+6)nY)+n(VyDA)X
for any X,Y € X(M). On the other hand, from (4.7) we have
g(VeV YY) +g(VyV,€) = 2(A + 2)n(Y)

(4.11)

for any Y € X(M). In view of the above equation, by taking the Lie derivative
of relation (4.1) along the potential vector field V' and making use of equations
(2.4) and (4.1), we obtain

= —(9(Lv&Y) + 20+ 2)n(YV))X + (9(LvE, X) +2(A + 2)n(X))Y
for any X,Y € X(M). It follows from equation (4.1) that

(4.12)
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forany X, Y € X(M). Clearly, using the above relation and comparing equation
(4.11) with (4.12) (substituting X with £ and applying Lemma 4.1), then we
obtain
Vy DA = n(Y)VeDA = 2(A+2)n(Y)E
+n(VyDA)E+2(A+2)Y — (VDAY
for any Y € X(M). It follows from the above equation that
AN = divDX = —n(Ve D) + 4(X\ + 2).
This completes the proof. (I

Corollary 4.1. A Ricci soliton on any three dimensional Kenmotsu manifold
is expanding with A = —2.

Proof. This corollary follows directly from relation (4.6). O
Theorem 4.1. Let (M3,$,£,n,9) be a three dimensional Kenmotsu manifold
which admits a gradient Ricci almost soliton (g, f,\). Then, either M3 is of

constant sectional curvature —1 or the potential vector field is pointwise colinear
with the Reeb vector field which is locally characterized by (4.23).

Proof. Firstly, putting (4.5) into (3.5) gives that

R(X,Y)Df

w3y = 5YOX — XOY — (543) a0y + (5 +3) nr)x
Y MXE+ S X(I(Y)E Y ()X + XY

for any X,Y € X(M). By (4.13), we see easily that

(4.14) 9(R(X,Y)Df,§) = X(\)n(Y) = Y (A\)n(X)

for any X,Y € X(M). On the other hand, by a simple calculation we obtain
from relation (4.1) that
(4.15) G(R(X,Y)E, Df) = Y(f)n(X) — X(fn(Y)
for any X,Y € X(M).

Comparing (4.14) with (4.15) gives an equation and replacing Y by £ in the
resulting equation we obtain

A(f =X = €(f = W,

where d is the exterior differentiation. This means that f — A is invariant along

the distribution D, i.e., X(f — A\) = 0 for any vector field X € D.
Contracting Y in (4.13) and applying Lemma 4.1 we obtain

S(X,Df) = %X(r) — 92X (\)

for any X € X(M). Clearly, comparing the above equation with (4.4) yields
(4.16) AX(A) = X(r) + (r +2)X(f) = (r + 6)n(X)E(f) = 0
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for any X € X(M). Replacing X by & in (4.16) we have {(A — f) = —(5 + 3),
and using this in d(f — A) = £(f — A\)n we obtain that

(4.17) d(f -\ = (g +3) 7.

Applying the well-known Poincare lemma and using the fact dn = 0 on the
above equation, we get dr A = 0 and hence by using (4.2) we have

(4.18) Dr = =2(r +6)¢.

Suppose that X in (4.16) is orthogonal to . Taking into account A— f being
a constant along D and using (4.17) and (4.18), then we get (r +6)X(f) =0
for any X € D. This implies that either r = —6 or
(4.19) Df =&(f)¢-

Now we discuss the above two cases as follows.

Case i: r = —6. By using this in equation (4.4) we see that g is an Einstein
metric, i.e., @ = —2id. Therefore, by using equation (4.3) we conclude that
M3 is of constant sectional curvature —1. Moreover, it follows from relation

(4.17) that f — X is a constant. Using this in relation (3.4) we see that the
gradient of the potential function is a conformal vector field.

Case ii: 7 # —6. It follows from equations (4.17) and (4.19) that
(4.20) DX = £(N)E.

Following a straightforward calculation, from equations (2.4) and (4.20) we get
AN = 2E(A) + £(E(N)). Comparing this with (4.6) gives

(4.21) £ + €M) =2(A+2).

By relation (4.4), it follows from (3.4) that A = g(VeDf, £)+S(€,6) = €(&(f))—
2 and using (4.2), (4.21) and (4.17) in this equation we have

(4.22) §(>\):>\fr—4and§(f):/\—gfl.

It is well-known [15] that a Kenmotsu manifold of dimension 2n+1 is locally
isometric to the warped product (—¢, €) X ..t N, where N is a Kéhlerian manifold

of dimension 2n and (—¢, €) is an open interval. Locally, we may write £ = 6%,
where t is the coordinate of the interval. Thus, using (4.18) we get r = aye =2t —
6 for certain non-zero constant «;. Hence, using this in (4.22) we obtain

1 1
(4.23) A= galefﬂ + aset —2and f = Ealefm + agel + ag
for certain non-zero constants as and ag. This completes the proof. O

According to Kenmotsu [15, Proposition 3], we see that the warped product
manifold R X ..+ N?" admits a Kenmotsu structure, where N2 is a Kihlerian
manifold and ¢ is a constant. Thus, as a corollary of the above Theorem 4.1
we get the following result.
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Corollary 4.2. Suppose that the warped product R X .. N? admits a gradient
Ricci almost soliton (g, f,\). Then either it is locally a hyperbolic space H3(—1)
or the soliton is non-trivial and it is locally characterized in Theorem 4.1.

Remark 4.1. Some sufficient conditions for a warped product to be a non-trivial
gradient Ricci soliton were shown in Pigola et al. [19, Section 2].

Suppose that (g, 8¢, A) (where 8 is a variable function and A a constant) on
a three dimensional Kenmotsu manifold M? is a Ricci soliton. Then, according
to Theorem 1 of Ghosh [9] we see that M? is of constant sectional curvature
—1 and the soliton is expanding with A = —2. Hence, by relation (1.1), we
have that ¢ is a Killing vector field. Using (2.4) then we get

(Lpeg)(X,Y) =2X(B)n(Y) +2B9(X,Y) — 26n(X)n(Y) =0

for any vector fields X,Y. By considering X =Y € D in the above equation
we obtain g = 0.

Remark 4.2. On a three dimensional Kenmotsu manifold, (g, 8¢, A) (where S
is a variable function) is a trivial Ricci soliton and (g,&, A) is never a Ricci
soliton.
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