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RICCI SOLITONS AND RICCI ALMOST SOLITONS ON

PARA-KENMOTSU MANIFOLD

Dhriti Sundar Patra

Abstract. The purpose of this article is to study the Ricci solitons and

Ricci almost solitons on para-Kenmotsu manifold. First, we prove that if
a para-Kenmotsu metric represents a Ricci soliton with the soliton vector

field V is contact, then it is Einstein and the soliton is shrinking. Next,
we prove that if a η-Einstein para-Kenmotsu metric represents a Ricci

soliton, then it is Einstein with constant scalar curvature and the soliton

is shrinking. Further, we prove that if a para-Kenmotsu metric represents
a gradient Ricci almost soliton, then it is η-Einstein. This result is also

hold for Ricci almost soliton if the potential vector field V is pointwise

collinear with the Reeb vector field ξ.

1. Introduction

A pseudo-Riemannian metric g, defined on a manifold Mn, is called a Ricci
soliton metric, or in short a Ricci soliton if there exist a constant λ ∈ R and a
vector field V ∈ χ(M) such that

1
2£V g +Ric = λg,(1.1)

where £V denotes the Lie-derivative in the direction of V and Ric is the Ricci
tensor of g. A Ricci soliton is said to be trivial if V is either zero or Killing onM .
Ricci soliton is considered as a generalization of Einstein metric and often arises
as a fixed point of Hamilton’s Ricci flow. In [19], Pigoli-Rigoli-Rimoldi-Setti
generalized the notion of Ricci soliton to Ricci almost soliton by allowing the
soliton constant λ to be a smooth function. We denote it by (Mn, g, V, λ). The
Ricci almost soliton is said to be shrinking, steady, and expanding accordingly
as λ is positive, zero, and negative respectively. Moreover, if the potential
vector field V is the gradient of some smooth function u on Mn, i.e., V = Du,
where D is the gradient operator of g on Mn, then the Ricci soliton is called a
gradient Ricci soliton and the soliton Eq. (1.1) becomes

Hess u+Ric = λg,(1.2)
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where Hess u denotes the Hessian of u. The function u is known as the
potential function.

As a generalization of Einstein metric, Ricci solitons grow interest on a new
class of pseudo-Riemannian geometry called paracontact geometry which is
introduced by Kaneyuki and Williams [15]. The importance of paracontact
manifolds comes from the theory of para-Kähler manifolds. Since then many
authors studied the paracontact geometry (see [1, 3, 5, 6, 9, 15, 16, 18, 25, 26]).
Specially, Calvaruso-Perrone [4] explicitly studied the Ricci solitons on almost
paracontact metric three-manifolds and describe more examples and Bejan-
Crasmareanu [1] studied Ricci solitons on 3-dimensional normal paracontact
manifolds. Further, Blaga [2] studied the η-Ricci soliton on para-Kenmotsu
manifolds. On the other hand, studies on Ricci solitons in the frame work of
contact geometry are very interesting and therefore many authors have been
developed (see [7, 8, 10–14, 17, 20] and references therein). Among these many
contexts: on Kenmotsu manifolds [10, 11], on K-contact and (κ, µ)-contact
manifolds [20], on Sasakian manifolds [14], on Kähler manifolds [8] etc. Re-
cently, the present author and Ghosh explicitly studied the Ricci solitons and
∗-Ricci solitons in the frame-work of Sasakian and (κ, µ)-contact manifolds (see
[12, 13]). Further, the study of Ricci solitons on almost Kenmotsu manifolds
was started by the Wang and Liu [23] and explicitly studied by Wang (see
[21,22]). Motivated by the above results we study the Ricci solitons and Ricci
almost solitons on para-Kenmotsu manifolds.

This paper is organized as follows. In Section 2, the basic information about
paracontact metric manifolds and para-Kenmotsu manifolds are given. In Sec-
tion 3, we consider Ricci solitons on para-Kenmotsu manifold and prove that
if a para-Kenmotsu metric g represents a Ricci soliton where the soliton vector
field V is contact, then it becomes a shrinking soliton which is Einstein. In
Section 4, we prove that if a para-Kenmotsu metric g represents a gradient
Ricci almost soliton, then it is η-Einstein. Also we prove this result for Ricci
almost soliton with the potential vector field V is pointwise collinear with the
Reeb vector field ξ.

2. Notes on paracontact metric manifolds

In this section, we recall some information about paracontact metric man-
ifolds. We refer to [3, 5, 6, 9, 15, 16, 25, 26] for more details as well as some
examples. A (2n + 1)-dimensional smooth manifold M2n+1 has an almost
paracontact structure (ϕ, ξ, η) if it admits a (1, 1)-tensor field ϕ, a vector field
ξ and a 1-form η satisfying the following conditions:

(2.1) ϕ2 = I − η ◦ ξ, ϕ(ξ) = 0, η ◦ ϕ = 0, η(ξ) = 1,

and there exists a distribution D : p ∈ M → Dp ⊂ TpM : Dp = Ker(η) =
{x ∈ TpM : η(x) = 0}, called paracontact distribution generated by η. If an
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almost paracontact manifold M2n+1 with a structure (ϕ, ξ, η) admits a pseudo-
Riemannian metric g such that

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y )(2.2)

for all vector fields X, Y on M , then we say that M has an almost paracontact
metric structure and g is called a compatible metric. The fundamental 2-form
Φ of an almost paracontact metric structure (ϕ, ξ, η, g) defined by Φ(X,Y ) =
g(X,ϕY ) for all vector fields X, Y on M . If Φ = dη, then the manifold
M2n+1(ϕ, ξ, η, g) is called a paracontact metric manifold. In this case, η is a
contact form, i.e., η ∧ (dη)n 6= 0, ξ is its Reeb vector field and M is a contact
manifold (see [6, 16, 18]). An almost paracontact metric manifold is said to be
para-Kenmotsu manifold if

(∇Xϕ)Y = η(Y )ϕX + g(X,ϕY )ξ(2.3)

for all vector fields X, Y on M . On para-Kenmotsu manifold [25]:

∇Xξ = −X + η(X)ξ,(2.4)

R(X,Y )ξ = η(X)Y − η(Y )X,(2.5)

Qξ = −2nξ,(2.6)

for all vector fields X, Y on M , where ∇ is the operator of covariant differen-
tiation of g and Q denotes the Ricci operator associated with the Ricci tensor
given by Ric(X,Y ) = g(QX,Y ) for all vector fields X, Y on M .

3. Para-Kenmotsu metric as a Ricci soliton

In this section, we study the Ricci Solitons on para-Kenmotsu manifold.
First we recall the following.

Lemma 3.1. Let M2n+1(ϕ, ξ, η, g) be a para-Kenmotsu manifold. Then we
have

R(X, ξ)Y = g(X,Y )ξ − η(Y )X,(3.1)

(∇Xη)Y = −g(X,Y ) + η(X)η(Y ),(3.2)

(£ξg)(Y,Z) = −2{g(Y,Z)− η(Y )η(Z)},(3.3)

for all vector fields Y , Z on M .

We can prove Lemma 3.1 by simple routine calculation. Using these results
now we prove the following lemma for later use.

Lemma 3.2. Let M2n+1(ϕ, ξ, η, g) be a para-Kenmotsu manifold. Then we
have

(£ξQ)Y = 2QY + 4nY = (∇ξQ)Y(3.4)

for all vector fields Y on M .
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Proof. First taking the covariant derivative of (3.3) along an arbitrary vector
field X on M and using (3.2) we obtain

(3.5) (∇X£ξg)(Y, Z) = −2{g(X,Y )η(Z) + g(X,Z)η(Y )− 2η(X)η(Y )η(Z)}

for all vector fields X, Y on M . Now, we recalling the following commutation
formula (see Yano [24], p. 23):

(£V∇Zg −∇Z£V g −∇[V,Z]g)(X,Y ) = − g((£V∇)(Z,X), Y )

− g((£V∇)(Z, Y ), X)

for all vector fields X, Y , Z on M . By virtue of parallelism of the pseudo-
Riemannian metric g, this formula reduces to

(3.6) (∇Z£V g)(X,Y ) = g((£V∇)(Z,X), Y ) + g((£V∇)(Z, Y ), X)

for all vector fields X, Y , Z on M . Using (3.5) in (3.6) we have

g((£ξ∇)(X,Y ), Z) + g((£ξ∇)(X,Z), Y )

= − 2{g(X,Y )η(Z) + g(X,Z)η(Y )− 2η(X)η(Y )η(Z)}

for all vector fields X, Y , Z on M . By a straightforward combinatorial com-
putation the foregoing equation yields

((£ξ∇)(Y,Z) = 2{η(Y )η(Z)ξ − g(Y,Z)ξ}(3.7)

for all vector fields Y , Z on M . Taking covariant differentiation of (3.7) along
X and using (2.2), we find

(∇X£ξ∇)(Y,Z) = − 2{g(X,Y )η(Z)ξ + g(Y,Z)η(X)ξ + g(Z,X)η(Y )ξ

− g(Y,Z)X + η(Y )η(Z)X − 3η(X)η(Y )η(Z)ξ}

for all vector fields Y , Z on M . Using this in the following commutation formula
(see Yano [24], p. 23)

(£VR)(X,Y )Z = (∇X£V∇)(Y,Z)− (∇Y £V∇)(X,Z),(3.8)

we can compute

(£ξR)(X,Y )Z = −2{g(X,Z)Y − g(Y, Z)X + η(Y )η(Z)X − η(X)η(Z)Y }

for all vector fields X, Y , Z on M . Now, contracting the foregoing Eq. over X,
we find

(3.9) (£ξRic)(Y,Z) = −4n{η(Y )η(Z)− g(Y,Z)}

for all vector fields Y , Z on M . On the other hand, taking Lie derivative of
Ric(Y, Z) = g(QY,Z) with respect to ξ, we get

(3.10) (£ξRic)(Y,Z) = (£ξg)(QY,Z) + g((£ξQ)Y,Z)

for all vector fields Y , Z on M . Now, replacing Y by QY in (3.3) and using
(2.6), we find

(3.11) (£ξg)(QY,Z) = −2{g(QY,Z) + 2nη(Y )η(Z)}
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for all vector fields Y , Z on M . By virtue of (3.11) and (3.10), Eq. (3.9) reduces
to (£ξQ)Y = 2QY +4nY for all vector fields Y on M . Further, it is well known
that

(£ξQ)Y = £ξQY −Q(£ξY )

= ∇ξQY −∇QY ξ −Q(∇ξY ) +Q∇Y ξ
= (∇ξQ)Y −∇QY ξ +Q∇Y ξ

for all vector fields Y on M . Thus, by virtue of (2.4) and (2.6) we see that
(£ξQ)Y = (∇ξQ)Y for all vector fields Y on M . This completes the proof. �

Now we consider a para-Kenmotsu metric as a Ricci soliton where the soliton
vector field V is contact and proof the following.

Theorem 3.1. Let M2n+1(ϕ, ξ, η, g), n > 1, be a para-Kenmotsu manifold.
If g represents a Ricci soliton, then the soliton is shrinking. Further, if the
soliton vector field V is contact, then V is strict and g is Einstein with Einstein
constant −2n.

Proof. First, from (2.4) we get R(X, ξ)ξ = −X + η(X)ξ and the Lie derivative
of this along V provides

(£VR)(X, ξ)ξ +R(X,£V ξ)ξ +R(X, ξ)£V ξ

= {(£V η)X}ξ + η(X)£V ξ(3.12)

for all vector fields X on M . Now, taking covariant derivative of (1.1) along
an arbitrary vector field Z on M and using (3.6) we have

g((£V∇)(Z,X), Y ) + g((£V∇)(Z, Y ), X) = −2(∇ZRic)(X,Y )

for all vector fields X, Y on M . By a straightforward combinatorial combina-
tion of the last equation one can deduce

g((£V∇)(X,Y ), Z) = (∇ZRic)(X,Y )− (∇XRic)(Y, Z)

− (∇YRic)(Z,X)(3.13)

for all vector fields X, Y , Z on M . Next, differentiating (2.6) along an arbitrary
vector field X on M and recalling (2.2) we get

(3.14) (∇XQ)ξ = QX + 2nX

for all vector fields X on M . Taking into account of this, (3.4) and replacing
Y by ξ in (3.13) we deduce

(3.15) (£V∇)(X, ξ) = −2QX − 4nX

for all vector fields X on M . Taking covariant derivative of (3.15) along Y and
using (2.2), (3.15) we obtain

(∇Y £V∇)(X, ξ)− (£V∇)(X,Y )− 2η(Y )(QX + 2nX) = −2(∇YQ)X

for all vector fields X on M . Making use of this in (3.8) yields

(£VR)(X,Y )ξ = 2[η(X)QY − η(Y )QX + 2n{η(X)Y − η(Y )X}
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− {(∇XQ)Y − (∇YQ)X}](3.16)

for all vector fields X, Y on M . Now, replacing Y by ξ in (3.16) and using
(3.14) and (3.4) we have (£VR)(X, ξ)ξ = 0. Making use of this along with
(2.4), (3.1) in (3.12), one can deduce

(3.17) g(X,£V ξ)− 2η(£V ξ)X = {(£V η)X}ξ
for all vector fields X on M . Next, taking into account (1.1), (2.6) in the Lie
differentiation g(ξ, ξ) = 1 along V leads to

(3.18) η(£V ξ) = λ− 2n.

Further, by virtue of (2.6), the soliton equation (1.1) reduces to

(3.19) (£V η)X = g(X,£V ξ)− 2(λ− 2n)η(X)

for all vector fields X on M . By the help of (3.19) and (3.18), Eq. (3.17)
provides λ = 2n and therefore the soliton is shrinking. Further, Eq. (3.18)
together with (3.19) yields

(3.20) £V ξ = 0 = £V η.

Also by our assumption, V is a contact vector field, i.e., £V ξ = fξ. Making
use of this in (3.18) gives f = λ− 2n and therefore f = 0. Thus, £V ξ = 0, and
hence V is strict. Now, recall the well known formula (see [24, p. 23]):

(3.21) £V∇XY −∇X£V Y −∇[V,X]Y = (£V∇)(X,Y )

for all vector fields X, Y , V on M . Next, taking ξ instead of Y in the preceding
equation and using (3.20) we get

(£V∇)(X, ξ) = £V∇Xξ −£VX + η(£VX)

for all vector fields X, V on M . Taking into account (2.2) and (3.20), the last
equation provides (£V∇)(X, ξ) = 0 for all vector fields X, V on M . By virtue
of this, Eq. (3.15) proves that g is Einstein. This completes the proof. �

A pseudo-Riemannian manifold is called η-Einstein, if the Ricci tensor Ric
is of the form

(3.22) Ric = ag + bη ⊗ η,
where a, b are smooth functions on M . For a para-Sasakian manifold of di-
mension > 3, the functions a, b are constant (see [25]).

Lemma 3.3. Let M2n+1(ϕ, ξ, η, g) be a para-Kenmotsu manifold. If M is an
η-Einstein manifold, we have

(3.23) Ric(Y,Z) = (1 +
r

2n
)g(Y,Z)− {(2n+ 1) +

r

2n
}η(Y )η(Z)

for all vector fields Y , Z on M .

Proof. Equations (3.22) and (2.6) gives r = (2n + 1)a + b and a + b = −2n.
Thus, we have a = 1 + r

2n and b = −{(2n+ 1) + r
2n}. Then the Eq. (3.22) can

be written as the required form. This completes the proof. �
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Theorem 3.2. Let M2n+1(ϕ, ξ, η, g), n > 1, be a η-Einstein para-Kenmotsu
manifold. If g represents a Ricci soliton, then the soliton is shrinking and g is
Einstein with constant scalar curvature r = −2n(2n+ 1).

Proof. By the help of (3.23), the soliton Eq. (1.1) becomes

(3.24) £V g(Y,Z) = {2(λ− 1)− r

n
}g(Y,Z) + {2(2n+ 1) +

r

n
}η(Y )η(Z)

for all vector fields Y , Z on M . Differentiating this along an arbitrary vector
field X on M and using (2.4), (3.6) we have

g((£V∇)(Z,X), Y ) + g((£V∇)(Z, Y ), X)(3.25)

= − (Xr)

n
g(Y, Z) +

(Xr)

n
η(Y )η(Z)− {2(2n+ 1) +

r

n
}{g(X,Y )η(Z)

+ g(X,Z)η(Y )− 2η(X)η(Y )η(Z)}

for all vector fields Y , Z on M . By straightforward combinatorial computation
of the last equation provides

2ng((£V∇)(X,Y ), Z)(3.26)

= − (Xr)g(Y,Z)− (Y r)g(X,Z) + (Zr)g(X,Y )

+ (Xr)η(Y )η(Z) + (Y r)η(X)η(Z)− (Zr)η(X)η(Y )

− 2{2n(2n+ 1) + r}{g(X,Y )η(Z)− η(X)η(Y )η(Z)}

for all vector fields X, Y , Z on M . Consider a local orthonormal basis {ei : i =
1, 2, . . . , 2n+1} of tangent space at each point of M . Next, setting X = Z = ei
in (3.13) and summing over i : 1 ≤ i ≤ 2n + 1, we have (£V∇)(ei, ei) = 0.
Now, putting X = Y = ei in (3.26) gives

(3.27) (ξr)η(Z) + (n− 1)(Zr) = 2n{2n(2n+ 1) + r}η(Z)

for all vector fields Z on M . Taking Z = ξ in the last equation we get (ξr) =
2{2n(2n + 1) + r}. By virtue of this, Eq. (3.27) yields Dr = (ξr)ξ. Next,
substituting X by ξ in (3.26) we obtain

(3.28) 2n(£V∇)(ξ, Y ) = −(ξr){Y − η(Y )ξ}
for all vector fields Y on M . Taking covariant derivative of this along X and
using (2.6) and (3.15) we get

2n(∇X£V∇)(ξ, Y ) = 2n(£V∇)(X,Y )−X(ξr){Y − η(Y )ξ}
− (ξr){g(X,Y )ξ + η(Y )X − η(X)Y − η(X)η(Y )ξ}(3.29)

for all vector fields Y on M . Next, interchanging X, Y in (3.29) and using the
well known formula (see [24, p. 23]):

(£VR)(X,Y )Z = (∇X£V∇)(Y,Z)− (∇Y £V∇)(X,Z),

it follows that

2n(£VR)(X,Y )ξ = Y (ξr){X − η(X)ξ} −X(ξr){Y − η(Y )ξ}(3.30)
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− 2(ξr){η(Y )X − η(X)Y }

for all vector fields X, Y on M . Contracting this over X we have (£VRic)(Y, ξ)
= 0, where we useDr = (ξr)ξ. Further, using (3.23), (3.30) in the Lie derivative
of Ric(Y, ξ) = −2nη(Y ) along V yields

(1 +
r

2n
)g(Y,£V ξ)− {(2n+ 1) +

r

2n
}η(Y )η(£V ξ)

= − 4n(λ− 2n)η(Y )− 2ng(Y,£V ξ)(3.31)

for all vector fields Y on M . Taking Y = ξ in the last equation we get λ = 2n
and therefore the soliton is shrinking. Again, setting Y = Z = ξ in (3.24) we
obtain η(£V ξ) = 0. Using this in (3.31) yields

(3.32) {r + 2n(2n+ 1)}£V ξ = 0.

Suppose r 6= −2n(2n+1) on some open set O of M . Then from (3.32) it follows
that £V ξ = 0. Thus, from (2.4) we deduce that ∇ξV = V −η(V )ξ. Using this,
(2.4), (2.5) and (3.28) in the identity (see [24, p. 39]):

(£V∇)(X,Y ) = ∇X∇Y V −∇∇XY V +R(V,X)Y,

we obtain ξr = 0. As Dr = (ξr)ξ, so the scalar curvature r is constant. This
shows from (3.27) that r = −2n(2n+ 1) on O, which is a contradiction on O.
Thus, Eq. (3.32) gives r = −2n(2n + 1) and therefore we can conclude from
(3.23) that M is Einstein. This completes the proof. �

4. Para-Kenmotsu metric as a Ricci almost soliton

In this section, we study the Ricci almost solitons on para-Kenmotsu man-
ifold. First, we consider a para-Kenmotsu metric as a gradient Ricci almost
soliton. Thus, the equation (1.1) and (1.2) holds for a smooth function λ.

Theorem 4.1. Let M2n+1(ϕ, ξ, η, g) be a Kenmotsu manifold. If g represents
a gradient Ricci almost soliton, then it is η-Einstein. Moreover, if the Reeb
vector field ξ leaves the scalar curvature r invariant, then g is Einstein with
constant scalar curvature −2n(2n+ 1).

Proof. Making use of (1.2) in the well known expression of the curvature tensor
R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], one can obtain

(4.1) R(X,Y )Df = (∇YQ)X − (∇XQ)Y + (Xλ)Y − (Y λ)X

for all vector fields X, Y on M . Now, replacing Y by ξ in (4.1) and using (3.4)
and (3.14) we deduce

R(X, ξ)Df = QX + 2nX + (Xλ)ξ − (ξλ)X

for all vector fields X on M . By virtue of (3.1), the preceding equation reduces
to

(4.2) g(X,Df −Dλ)ξ = QX + 2nX + {(ξf)− (ξλ)}X
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for all vector fields X on M . Taking scalar product of (4.2) with ξ and using
(2.6) yields

(4.3) Df −Dλ = {(ξf)− (ξλ)}ξ.

Using this in (4.2) we have

(4.4) Ric(X,Y ) = −{2n+ (ξf)− (ξλ)}g(X,Y ) + {(ξf)− (ξλ)}η(X)η(Y )

for all vector fields X, Y on M . Consider a local orthonormal basis {ei : i =
1, 2, . . . , 2n + 1} of tangent space at each point of M . Next, taking the inner
product of (4.1) with Z and then setting X = Z = ei and summing over
i : 1 ≤ i ≤ 2n+ 1, we have

(4.5) Ric(Y,Dλ) = {
2n+1∑
i=1

g(g((∇YQ)ei, ei)− (∇eiQ)Y, ei)} − 2n(Y λ)

for all vector fields Y on M . Contraction of Bianchi’s second identity gives
divQ = 1

2Dr and therefore Eq. (4.5) yields

(4.6) Ric(Y,Dλ) =
1

2
Y r − 2nY λ

for all vector fields Y on M . Replacing ξ by Y and using (2.6) we have (ξr) =
4n{(ξλ) − (ξf)}. Again, tracing (3.4) gives (ξr) = 2(r + 2n(2n + 1)) and
therefore 2n{(ξf)− (ξλ)} = (r + 2n(2n+ 1)). Using this in (4.4) we have

(4.7) Ric(X,Y ) = −(
r

2n
+ 4n+ 1)g(X,Y ) + (

r

2n
+ 2n+ 1)η(X)η(Y )

for all vector fields X, Y on M . Thus, M is η-Einstein. Moreover, if ξ leaves
the scalar curvature r invariant, i.e., ξr = 0 and therefore, r = −2n(2n + 1).
This transform the Eq. (4.7) into Ric = −2ng, i.e., g is Einstein. This complete
the proof. �

Next, we extend the above Theorem from gradient Ricci almost soliton to
Ricci almost soliton and consider para-Kenmotsu metric as a Ricci almost soli-
ton and the potential vector field V is pointwise collinear with the Reeb vector
field ξ and prove:

Theorem 4.2. Let M2n+1(ϕ, ξ, η, g) be a para-Kenmotsu manifold. If g rep-
resents a non-trivial Ricci almost soliton such that the potential vector field V
is pointwise collinear with the Reeb vector field ξ, then it is η-Einstein.

Proof. By hypothesis: V = ρξ for some smooth function ρ on M . Taking
covariant derivative of this along an arbitrary vector field X on M and using
(2.2) provides

(4.8) ∇XV = (Xρ)ξ − ρ(X + η(X)ξ).

Then the soliton equation (2.1) reduces to

(4.9) 2Ric(X,Y ) = 2(ρ− λ)g(X,Y )− (Xρ)η(Y )− (Y ρ)η(X)− 2ρη(X)η(Y )
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for all vector fields X, Y on M . Now, replacing X = Y = ξ in the foregoing
equation and using (2.6), we have ξρ = 2n − λ. Taking into account of this,
(2.6) and putting Y = ξ in (4.9) gives Xρ = (2n− λ)η(X). using this in (4.9),
we have

(4.10) Ric(X,Y ) = (ρ− λ)g(X,Y )− (2n+ ρ− λ)η(X)η(Y )

for all vector fields X, Y on M . Tracing the preceding equation gives

(4.11) ρ− λ =
r

2n
+ 1.

This transform the Eq. (4.10) into

Ric(X,Y ) = (
r

2n
+ 1)g(X,Y )− (

r

2n
+ 2n+ 1)η(X)η(Y )

for all vector fields X, Y on M . This implies that M is η-Einstein. This
complete the proof. �

Next, if we take ρ a constant instead of a function, then from Xρ = (2n −
λ)η(X), we have λ = 2n, which is constant. Thus from (4.11) follows that ξr =
0. Again, tracing (3.4) gives (ξr) = 2(r+ 2n(2n+ 1)). Hence r = −2n(2n+ 1).
Making use of this in (4.11) we see that ρ = 0, and therefore from the soliton
Eq. we conclude that g is Einstein. Thus, we have the following.

Corollary 4.1. If a para-Kenmotsu metric g represents a non-trivial Ricci al-
most soliton with V = ρξ for some constant ρ, then it is Einstein with constant
scalar curvature r = −2n(2n+ 1).

In particular, we can also say that if a para-Kenmotsu metric g represents
a non-trivial Ricci almost soliton where the potential vector field V is ξ, then
it is Einstein with constant scalar curvature r = −2n(2n+ 1).
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