• Title/Summary/Keyword: adaptive evolutionary algorithm

Search Result 81, Processing Time 0.024 seconds

A New Hybrid Evolutionary Programming Technique Using Sub-populations with Different Evolutionary Behaviors and Its Application to Camera Calibration (서로 다른 진화 특성을 가지는 부집단들을 사용한 새로운 하이브리드 진화 프로그래밍 기법과 카메라 보정 응용)

  • 조현중;오세영;최두현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.81-92
    • /
    • 1998
  • A new hybrid technique using several sub-populations having completely different evolutionary behaviors is proposed to increase the possibility to quickly find the global optimum of continuous optimization problem. It has three sub-populations. Two NPOSA algorithms showing good performance in the problem having a rugged fitness function are applied to two sub-populations and a self-adaptive evolutionary algorithm to the other sub-population. Sub-populations evolve in different manners and the interaction among these sub-populations lead to the global optimum quickly. The efficiency of this technique is verified through benchmark test functions. Finally, the algorithm with three sub-populations has been applied to seek for the optimal camera calibration parameters. After an error function has been defined using measured feature points of a calibration block, it has been shown that the algorithm searches for the camera parameters that minimize the error function.

  • PDF

Optimal Location and Sizing of Shunt Capacitors in Distribution Systems by Considering Different Load Scenarios

  • Dideban, Mohammadhosein;Ghadimi, Noradin;Ahmadi, Mohammad Bagher;Karimi, Mohammmad
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1012-1020
    • /
    • 2013
  • In this work, Self-adaptive Differential Evolutionary (SaDE) algorithm is proposed to solve Optimal Location and Size of Capacitor (OLSC) problem in radial distribution networks. To obtain the SaDE algorithm, two improvements have been applied on control parameters of mutation and crossover operators. To expand the study, three load conditions have been considered, i.e., constant, varying and effective loads. Objective function is introduced for the load conditions. The annual cost is fitness of problem, in addition to this cost, CPU time, voltage profile, active power loss and total installed capacitor banks and their related costs have been used for comparisons. To confirm the ability of each improvements of SaDE, the improvements are studied both in separate and simultaneous conditions. To verify the effectiveness of the proposed algorithm, it is tested on IEEE 10-bus and 34-bus radial distribution networks and compared with other approaches.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

Adaptive Learning Path Recommendation based on Graph Theory and an Improved Immune Algorithm

  • BIAN, Cun-Ling;WANG, De-Liang;LIU, Shi-Yu;LU, Wei-Gang;DONG, Jun-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2277-2298
    • /
    • 2019
  • Adaptive learning in e-learning has garnered researchers' interest. In it, learning resources could be recommended automatically to achieve a personalized learning experience. There are various ways to realize it. One of the realistic ways is adaptive learning path recommendation, in which learning resources are provided according to learners' requirements. This paper summarizes existing works and proposes an innovative approach. Firstly, a learner-centred concept map is created using graph theory based on the features of the learners and concepts. Then, the approach generates a linear concept sequence from the concept map using the proposed traversal algorithm. Finally, Learning Objects (LOs), which are the smallest concrete units that make up a learning path, are organized based on the concept sequences. In order to realize this step, we model it as a multi-objective combinatorial optimization problem, and an improved immune algorithm (IIA) is proposed to solve it. In the experimental stage, a series of simulated experiments are conducted on nine datasets with different levels of complexity. The results show that the proposed algorithm increases the computational efficiency and effectiveness. Moreover, an empirical study is carried out to validate the proposed approach from a pedagogical view. Compared with a self-selection based approach and the other evolutionary algorithm based approaches, the proposed approach produces better outcomes in terms of learners' homework, final exam grades and satisfaction.

An Efficient Global Optimization Method for Reducing the Wave Drag in Transonic Regime (천음속 영역의 조파항력 감소를 위한 효율적인 전역적 최적화 기법 연구)

  • Jung, Sung-Ki;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The use of evolutionary algorithm is limited in the field of aerodynamics, mainly because the population-based search algorithm requires excessive CPU time. In this paper a coupling method with adaptive range genetic algorithm for floating point and back-propagation neural network is proposed to efficiently obtain a converged solution. As a result, it is shown that a reduction of 14% and 33% respectively in wave drag and its consumed time can be achieved by the new method.

Design of Adaptive Fuzzy Logic Controller for Speed Control of AC Servo Motor

  • Nam Jing-Rak;Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Chung Chin-Young
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • In this paper, the adaptive fuzzy logic controller(AFLC) is proposed, which uses real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. The effectiveness of the proposed AFLC was demonstrated by computer simulation for speed control system of AC servo motor. As a result of simulation for the AC servo motor, it is shown the proposed AFLC has the better performance on overshoot, settling time and rising time than the PI controller which is used when tuning AFLC.

Adaptive Truncation technique for Constrained Multi-Objective Optimization

  • Zhang, Lei;Bi, Xiaojun;Wang, Yanjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5489-5511
    • /
    • 2019
  • The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve distribution and convergence of the obtained solutions. First of all, as a novel constraint handling technique, ε-truncation technique keeps an effective balance between feasible solutions and infeasible solutions by permitting some excellent infeasible solutions with good objective value and low constraint violation to take part in the evolution, so diversity is improved, and convergence is also coordinated. Next, an exponential variation is introduced after differential mutation and crossover to boost the local exploitation ability. At last, the improved crowding density method only selects some Pareto solutions and near solutions to join in calculation, thus it can evaluate the distribution more accurately. The comparative results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the other algorithms and it gains better in terms of convergence in some extent.

A Design of Steering Controller for AGV using Immune Algorithm (면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구)

  • Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2824-2826
    • /
    • 2002
  • Immune system is an evolutionary biological system to protect innumerable foreign materials such as virus, germ cell, and etcetera. Immune algorithm is the modeling of this systems response that has adaptation and reliability when disturbance occur. In this paper, immune algorithm is proposed to control four wheels steering AGV(Automated Guided Vehicle) in container yard. The adaptive immune system is applied to the PID controller. For design the PID controller using immune algorithm, we tune PID parameters by off-line manner, in order to avoid the damage from abrupt control force. Repeatedly, the PID parameters are adjusted to be accurate by on-line fine tuner of immune algorithm. And then the computer simulation result from the viewpoint of yaw rate and lateral displacement are analyzed and compared with result of conventional PID controller.

  • PDF

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

  • Ji, Jeong-Hoon;Park, Su-Hyun;Woo, Gyun;Cho, Hwan-Gue
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.809-817
    • /
    • 2008
  • Program plagiarism is widespread due to intelligent software and the global Internet environment. Consequently the detection of plagiarized source code and software is becoming important especially in academic field. Though numerous studies have been reported for detecting plagiarized pairs of codes, we cannot find any profound work on understanding the underlying mechanisms of plagiarism. In this paper, we study the evolutionary process of source codes regarding that the plagiarism procedure can be considered as evolutionary steps of source codes. The final goal of our paper is to reconstruct a tree depicting the evolution process in the source code. To this end, we extend the well-known bioinformatics approach, a local alignment approach, to detect a region of similar code with an adaptive scoring matrix. The asymmetric code similarity based on the local alignment can be considered as one of the main contribution of this paper. The phylogenetic tree or evolution tree of source codes can be reconstructed using this asymmetric measure. To show the effectiveness and efficiency of the phylogeny construction algorithm, we conducted experiments with more than 100 real source codes which were obtained from East-Asia ICPC(International Collegiate Programming Contest). Our experiments showed that the proposed algorithm is quite successful in reconstructing the evolutionary direction, which enables us to identify plagiarized codes more accurately and reliably. Also, the phylogeny construction algorithm is successfully implemented on top of the plagiarism detection system of an automatic program evaluation system.