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ABSTRACT 

Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a 
production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, 
by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling 
aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufac-
turing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of 
them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-
based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time 
for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we 
address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assign-
ment mechanism and performance measures for solving multiple objective optimization problems, and four crucial 
issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in 
flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manu-
facturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models 
and integrated systems for manufacturing. 
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1.  INTRODUCTION 

Scheduling is one of the most important fields in 
manufacturing optimization. Scheduling involves de-
termining the allocation of plant resources. Tasks must 
be assigned to the process units, and the duration and 
amount of processed material related to those assigned 
tasks must be determined (Verderame and Floudas, 
2008). For a more extensive explanation of the various 
aspects of the scheduling model, the reader is directed to 

the reviews of Floudas and Lin (2004, 2005). The qual-
ity of the planning model and the integration scheme can 
be rendered inconsequential if the scheduling level does 
not rigorously model the production capacity of the 
plant, which is greatly dependent on the chosen time 
representation. Bidot et al. (2009) gave detail definitions 
to avoid ambiguity of terms commonly used by different 
communities: complete schedule, flexible schedule, con-
ditional schedule, predictive schedule, executable sche-
dule, adaptive scheduling system, robust predictive sche-
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dule and table predictive schedule.  
However, to find the optimal solutions of manufac-

turing scheduling gives rise to complex combinatorial 
optimization problems; unfortunately, most of them fall 
into the class of NP-hard combinatorial problems. De-
pending on the common sense “from easy to difficult” 
and “from simple to complex”, Gen et al. (2008) gave a 
widely surveyed scheduling models as shown in Figure 1. 

Genetic algorithm (GA) has attracted significant at-
tention with respect to complexity scheduling, which is 
referred to genetic scheduling, it is a vital research do-
main at interface of two important sciences–artificial in-
telligence and operational research (Dahal, et al., 2007). 
In the last decade, Nowicki and Smutnicki (2005) pro-
vided an approximate Tabu search (TS) algorithm for 
job-shop scheduling problem (JSP) that is based on the 
big valley phenomenon, and uses some elements of so-
called path relinking technique as well as new theoreti-
cal properties of neighborhoods. Tavakkoli-Moghaddam 
et al. (2005) used a neural network approach to generate 
initial feasible solutions and adapted a simulated anneal-
ing (SA) algorithm to improve the quality and perform-
ance of the solution in JSP. Wu and Weng (2005) con-
sidered the problem with job earliness and tardiness ob-
jectives, and proposed a multiagent scheduling method. 
Xia and Wu (2005) treated this problem with a hybrid of 
particle swarm optimization (PSO) and SA as a local 
search algorithm. Zhang and Gen (2005) proposed a 
multistage operation-based GA to deal with the flexible 
JSP (fJSP) problem from the point view of dynamic 
programming. Kacem et al. (2002a) proposed a GA con-
trolled by the assigned model which is generated by the 
approach of localization. Najid et al. (2002) used simu-
lated annealing for optimizing the flexible assignment of 
machines in fJSP. Lopez and Moramay (2005) newly 
described the design and implementation of a step-based 
manufacturing information system to share flexible ma-

nufacturing resources data. 
Recently, manufacturing scheduling problems are 

also formulated in distributed and dynamic environ-
ments. Xiang and Lee (2008) proposed an ant colony 
intelligence algorithm for multi-agent dynamic manu-
facturing scheduling. Ant colony intelligence (ACI) is 
proposed to be combined with local agent coordination 
so as to make autonomous agents adaptive to changing 
circumstances and to give rise to efficient global per-
formance. Wang et al. (2008) proposed a multi-agent 
approach integrated with a filtered beam-search-based 
heuristic algorithm to study the dynamic scheduling pro-
blem in a flexible manufacturing system (FMS) shop 
floor consisting of multiple manufacturing cells.  

Framinan and Ruiz (2010) gave a research review 
for architecture of manufacturing scheduling systems. 
Process planning and scheduling were regarded as sepa-
rate tasks performed sequentially, where scheduling was 
implemented after process plans had been generated. 
However, their functions are usually complementary. If 
the two systems can be integrated more tightly, greater 
performance and higher productivity of manufacturing 
system can be achieved. Shao et al. (2009) proposed an 
integration process planning and scheduling model and 
gave a GA-based approach developed to facilitate the 
integration and optimization of the two functions. In 
order to improve the optimized performance of the GA-
based approach, more efficient genetic representations 
and operator schemes have been developed. Li et al. 
(2010) proposed an agent-based approach to integrated 
process planning and scheduling. In this approach, the 
two functions are carried out simultaneously, and an 
optimization agent based on an evolutionary algorithm 
(EA) is used to manage the interactions and communica-
tions between agents to enable proper decisions to be 
made. Gen et al. (2009b) surveyed evolutionary tech-
niques for various optimization problems in integrated 
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Figure 1. The core models of scheduling. 
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manufacturing system. Recently, Zhang and Gen (2010) 
proposed multiobjective genetic algorithm for solving 
process planning and scheduling problem in distributed 
manufacturing system, and Zhang et al. (2012) proposed 
hybrid sampling strategy-based multiobjective EA for 
process planning and scheduling problem. Lin et al. 
(2012a) reported a network modeling technique to for-
mulate the complex scheduling problems in manufactur-
ing, focus on how to model the scheduling problems to 
mathematical formulation, and proposed a multisection 
EA for the scheduling models formulated by network 
modeling.  

Furthermore, many researches are focusing on the 
multiobjectives manufacturing scheduling problems. Li 
and Huo (2009) proposed a GA for multiobjective fJSP 
with consideration of maintenance planning, intermedi-
ate inventory, and machines in parallel, which had a 
background of practical scheduling problem in seamless 
steel tube production. Geiger (2011) proposed a heuris-
tic search, intensification through variable neighborho-
ods, and diversification through perturbations and suc-
cessive iterations in favorable regions of the search space, 
and successfully tested on permutation flow shop sche-
duling problems under multiple objectives. Karimi-Nasab 
and Aryanezhad (2011) introduced a multi-product mul-
ti-period production planning problems. A novel mul-
tiobjective model for the production smoothing problem 
on a single stage facility for which some of the operat-
ing times could be determined in a time interval. The 
proposed model was solved by a GA, which uses a novel 
achievement function for exploring the solution space, 
based on LP-metric concepts. Li et al. (2012) proposed 
Nash equilibrium in a game theory based approach that 
has been used to deal with the multiobjective integrated 
process planning and scheduling. 

The rest of this survey paper is organized as fol-
lows: in Section 2, we introduce multiobjective GA, and 
give fitness assignment mechanism, and performance 
measures for multiple objective optimization problems, 
that are useful for designing multiobjective GAs. In Sec-
tion 3, we give fJSP and propose a multistage operation-
based GA (moGA) approach for solving fJSP. In Sec-
tion 4, we introduce automatic guided vehicle (AGV) 
dispatching in flexible manufacturing system (FMS) 
combined with priority-based GA and in Section 5 a 
recent advanced planning and scheduling (APS) model 
will be introduced. 

2.  MULTIOBJECTIVE GENETIC 
ALGORITHM 

Optimization deals with the problems of seeking 
solutions over a set of possible choices to optimize cer-
tain criteria. If there is only one criterion to be taken into 
consideration, it becomes single objective optimization 
problems, which have been extensively studied for the 
past 50 years. If there are more than one criterion which 

must be treated simultaneously, we have multiple objec-
tive optimization problems (Steuer, 1986; Deb, 2005). 
Multiple objective problems arise in the design, model-
ing, and planning of many complex real systems in the 
areas of industrial production, urban transportation, 
capital budgeting, forest management, reservoir man-
agement, layout and landscaping of new cities, energy 
distribution, etc. It is easy to find that almost every im-
portant real world decision problem involves multiple 
and conflicting objectives which need to be tackled while 
various constraints are leading to overwhelming prob-
lem complexity. The multiple objective optimization pro-
blems have been receiving growing interest from rese-
archers with various backgrounds since early 1960 (Hwang 
and Yoon, 1981). There are a number of scholars who 
have made significant contributions to the problem. 
Among them, Pareto is perhaps one of the most recog-
nized pioneers in the field (Pareto, 1906). Recently, GAs 
have been received considerable attention as a novel 
approach to multiobjective optimization problems, re-
sulting in a fresh body of research and applications 
known as genetic multiobjective optimization (EMO). 

The inherent characteristics of EAs demonstrate 
why genetic search is possibly well suited to the multi-
ple objective optimization problems. The basic feature 
of EAs is the multiple directional and global searches by 
maintaining a population of potential solutions from 
generation to generation. The population-to-population 
approach is hopeful to explore all Pareto solutions. 

EAs do not have many mathematical requirements 
about the problems and can handle any kind of objective 
functions and constraints. Due to their genetic nature, 
the EAs can search for solutions without regard to the 
specific inner workings of the problem. Therefore, it of-
fers more hope for solving many more complex prob-
lems than the conventional methods. 

Because EAs, as a kind of metaheuristics, provide 
us a great flexibility to hybridize with conventional me-
thods into their main framework, we can take both ad-
vantages of the EAs and the conventional methods to 
make much more efficient implementations for the prob-
lems. The ingrowing researches on applying EAs to the 
multiple objective optimization problems present a for-
midable theoretical and practical challenge to the mathe-
matical community (Gen et al., 2008).  

2.1 Multiobjective Optimization Model 

A single objective optimization problem is usually 
given in the following form: 

 
max ( )=z f x  
s.t. ( ) 0, 1, 2, ,≤ =ig i mx  (1) 
 

where x∈Rn is a vector of n decision variables, f(x) is 
the objective function, and gi(x) are inequality constraint 
m functions, which form the area of feasible solutions. 
We usually denote the feasible area in decision space 
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with the set S as follows: 
 

{ }( ) 0, 1, 2, , , 0= ∈ ≤ = ≥n
iS R g x i mx x      (2) 

 
Without loss of generality, a multiple objective op-

timization problem (MOP) can be formally represented 
as follows: 

 
{ }1 1 2 2max ( ), ( ), , ( )= = =q qz f z f z fx x x  

s.t. ( ) 0, 1, 2, ,≤ =ig i mx  (3) 
 
We sometimes graph the multiple objective prob-

lem in both decision space and criterion space. S is used 
to denote the feasible region in the decision space and Z 
is used to denote the feasible region in the criterion 
space. 

 
{ }1 1 2 2( ), ( ), , ( ),= ∈ = = = ∈q q qZ z Q z f z f z f Sx x x x (4) 
 
where x ∈ Rk is a vector of values of q objective 

functions. In the other words, Z is the set of images of 
all points in S. Although S is confined to the nonnega-
tive region of Rn, Z is not necessarily confined to the 
nonnegative region of Rq. 

In principle, MOPs are very different from single 
objective optimization problems. For the single objec-
tive case, one attempts to obtain the best solution, which 
is absolutely superior to all other alternatives. In the 
case of multiple objectives, there does not necessarily 
exist such a solution that is the best with respect to all 
objectives because of incommensurability and conflict 
among objectives. A solution may be best in one objec-
tive but worst in other objectives. Therefore, there usu-
ally exists a set of solutions for the multiple objective 
cases which cannot be simply compared with each other. 
Such kind of solutions are called non-dominated solu-
tions or Pareto optimal solutions, for which no im-
provement in any objective function is possible without 
sacrificing on at least one of the other objective func-
tions. For a given non-dominated point in the criterion 
space Z, its image point in the decision space S is called 
efficient or non-inferior. A point in S is efficient if and 
only if its image in Z is non-dominated. 

 
Definition 1: For a given point z0 Z, it is non-dominated 
if and only if there does not exist another point z Z such 
that for the maximization case,  

{ }0 , for some 1, 2, ,> ∈k kz z k q  
0 , for all> ≠l lz z l k  

 
where z0 is a dominated point in the criterion space 

Z with q objective functions. 
 

Definition 2: For a given point x0 S, it is efficient if and 

only if there does not exist another point x S such that 
for the maximization case, 
 

{ }0( ) ( ), for some 1, 2, ,> ∈k kf f k qx x  

0( ) ( ), for all> ≠l lf f l kx x  
 
where x0 is an inefficient in the decision space S 

with q objective functions. 

2.2 Fitness Assignment Mechanism 

GAs are essentially a kind of meta-strategy meth-
ods. When applying the GAs to solve a given problem, 
it is necessary to refine upon each of the major compo-
nents of GAs, such as encoding methods, recombination 
operators, fitness assignment, selection operators, con-
straints handling, and so on, in order to obtain the best 
solution to the given problem. Because the MOPs are 
the natural extensions of constrained and combinatorial 
optimization problems, so many useful methods are 
based on GAs developed during the past two decades. 
One of the special issues in the MOPs is fitness assign-
ment mechanism. Since the 1980s, several fitness as-
signment mechanisms have been proposed and applied 
in MOPs (Gen et al., 2008). 

 
Type 1: Vector evaluation approach 
Vector evaluated genetic algorithm (VEGA; Schaffer, 
1985) is the first notable work to solve multiobjective 
problems in which it uses a vector fitness measure to 
create the next generation.  
 
Type 2: Pareto ranking + Diversity 
Multiobjective genetic algorithm (MOGA): Fonseca and 
Fleming (1995) proposed a MOGA in which the rank of 
a certain individual corresponds to the number of indi-
viduals in the current population by which it is domi-
nated. Based on this scheme, all the non-dominated in-
dividuals are assigned rank 1, while dominated ones are 
penalized according to the population density of the 
corresponding region of the tradeoff surface.  
Non-dominated sorting genetic algorithm (NSGA): Sri-
nivas and Deb (1995) also developed a Pareto ranking-
based fitness assignment and it is called NSGA. In each 
method, the non-dominated solutions constituting a non-
dominated front are assigned the same dummy fitness 
value. These solutions are shared with their dummy fit-
ness values (phenotypic sharing on the decision vectors) 
and ignored in the further classification process. Finally, 
the dummy fitness is set to a value less than the smallest 
shared fitness value in the current non-dominated front. 
Then the next front is extracted. This procedure is re-
peated until all individuals in the population are classi-
fied. 

 
Type 3: Weighted Sum + Elitist Preserve 
Random-weight genetic algorithm (RWGA): Ishibuchi 
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and Murata (1998) proposed a weighted-sum based fit-
ness assignment method, called RWGA to obtain a vari-
able search direction toward the Pareto frontier. Weigh-
ted-sum approach can be viewed as an extension of 
methods used in the multiobjective optimizations to 
GAs. It assigns weights to each objective function and 
combines the weighted objectives into a single objective 
function. 
Strength Pareto genetic algorithm II (SPEA II): Zitzler 
and Thiele (1999) proposed SPEA and an extended ver-
sion SPEA II (Zitzler et al., 2001) that combines several 
features of previous MOGA in a unique manner. 
Adaptive-weight genetic algorithm (AWGA): Gen and 
Cheng (2000) proposed another weight sum-based fit-
ness assignment method, called AWGA which utilizes 
some useful information from the current population to 
readjust weights to obtain a search pressure toward the 
Pareto frontier. 
Non-dominated sorting genetic algorithm II (NSGA II): 
Deb (1989, 2001) suggested a non-dominated sorting-
based approach, called NSGA II, which alleviates the 
three difficulties: computational complexity, non-elitism 
approach, and the need for specifying a sharing parame-
ter. The NSGA II was advanced from its origin, NSGA. 
In NSGA II, a non-dominated sorting approach is used 
for each individual to create Pareto rank, and a crowding 
distance assignment method is applied to implement 
density estimation. 
Interactive adaptive-weight genetic algorithm (i-AWGA): 
Gen et al. (2008) proposed an i-AWGA, which is an 
improved adaptive-weight fitness assignment approach 
with the consideration of the disadvantages of weighted-
sum approach and Pareto ranking-based approach. They 
combined a penalty term to the fitness value for all of 
dominated solutions. 

2.3 Procedure of Multiobjective Genetic Algorithm 

The P(t) and C(t) are parents and offspring respec-
tively in current generation t, the implementation struc-
ture of multiobjective hybrid GA with combining the 
fuzzy logic method (Lin and Gen, 2008), local search 
routine and multiobjective fitness assignment method is 
described as follows: 

 
procedure: multiobjective hybrid GA 
input: MOP problem data, GA parameters 
output: Pareto optimal solutions E 
begin 

t ← 0;  // t: generation number 
initialize P(t) by encoding routine; // P(t): population 
calculate objectives zi(P), i = 1, …, q by decoding 
routine; 
create Pareto E(P) by non-dominated routine; 
calculate eval(P) by fitness assignment routine; 
while (not termination condition) do 

create C(t) from P(t) by crossover routine; 
create C(t) from P(t) by mutation routine; //C(t): 

offspring 
update C(t) by local search routine; 
calculate objectives zi(C), I = 1, …, q by decoding 
routine; 
update Pareto E(P, C) by non-dominated routine; 
calculate eval(P, C) by fitness assignment routine; 
tune GA parameters by fuzzy logic routine; 
select P(t+1) from P(t) and C(t) by selection; 
t←t+1; 

end 
output Pareto optimal solutions E(P, C); 

end; 

3.  FLEXIBLE JOB SHOP SCHEDULING 
MODELS 

3.1 Background and Mathematical Model 

Flexible job shop is a generalization of the job shop 
and the parallel machine environment (Pinedo, 2002), 
which provides a closer approximation to a wide range 
of real manufacturing systems. In particular, there are a 
set of parallel machines with possibly different effi-
ciency. The fJSP allows an operation to be performed by 
any machine in a work center. This presents two prob-
lems. The first one is the routing problem (i.e., the as-
signment of operations to machines), and the second one 
is the scheduling problem (i.e., determining the starting 
time of each operation). The fJSP is NP-hard since it is 
an extension of the JSP (Garay et al., 1976). It is a com-
bined assignment and scheduling decision. 

 
 Every machine processes only one operation at a time. 
 The execution of each operation requires one machine 

selected from a set of available machines for the op-
eration.  

 The operation sequence of a job is prespecified. 
 The operations are not preemptable, that is, once an 

operation has started it cannot be stopped until it has 
finished. 

 The set-up times for the operations are sequence-
independent and are included in the processing times. 

 The problem is to assign each operation to an avail-
able machine and sequence the operations assigned on 
each machine in order to minimize the makespan, that 
is, the time required to complete all jobs. The nota-
tions used in this section are summarized as below: 

 
Before introduce the mathematical model some 

symbols and notations have been defined as follows: 
 

Indices 
i: index of jobs, i, h = 1, 2, …, n; 
j: index of machines, j = 1, 2, …, m; 
k: index of operations, k = 1, 2, …, Ki 

Parameters 
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n: total number of jobs 
m: total number of machines 
Ki: total number of operations in job i (or Ji) 
Ji: the ith job 
oik: the kth operation of job i (or Ji) 
Mj: the jth machine 
pikj: processing time of operation oik on machine j 

(or Mj) 
U: a set of machines with the size m 
Uik: a set of available machines for the operation oik 
Wj: workloads (total processing time) of machine 

Mj  
Decision variables 

1,  if machine  is selected for the operation  
0,  otherwise

:  completion time of the operation 

ik
ikj

ik ik

j o
x

c o

⎧⎪⎪=⎨⎪⎪⎩

 
 
The fJSP model will be formulated as a 0-1 mixed 

integer programming as follows: 
 

{ }{ }1 1
min max max

≤ ≤ ≤ ≤
=

i
M iki n k K

t c  (5) 

{ }
1

min max
≤ ≤

=M ji n
W W  (6) 

1

min
=

=∑
m

T j
j

W W  (6) 

( 1)s.t. 0, 2, , ; ,−− − ≥ = ∀ik ikj ikj i k ic t x c k K i j  (7) 

1

1, ,
=

= ∀∑
m

ikj
j

x k i  (8) 

{ }0, 1 , , ,∈ ∀ikjx j k i  (9) 
  0, ,≥ ∀ikc k i  (8) 

 
The first objective function accounts for makespan, 

Eq. (5) combining with Eq. (6) give a physical meaning 
to the fJSP, which refer to reducing total processing 
time and dispatching the operations averagely for each 
machine. Considering both of the two equations, our 
objective is to balancing the workloads of all machines. 
Eq. (7) states that the successive operation has to be 
started after the completion of its precedent operation of 
the same job, which represents the operation precedence 
constraints. Eq. (8) states that one machine must be se-
lected for each operation. 

 
Table 1. Processing time of operations 

 M1 M2 M3 M4 

J1 
o11 
o12 
o13 

1 
3 
3 

3 
8 
5 

4 
2 
4 

1 
1 
7 

J2 
o21 
o22 
o23 

4 
2 
9 

1 
3 
1 

1 
9 
2 

4 
3 
2 

J3 
o31 
o32 

8 
4 

6 
5 

3 
8 

5 
1 

To demonstrate fJSP model clearly, we firstly pre-
pare a simple example. Table 1 give the data set of an 
fJSP including 3 jobs operated on 4 machines. It is ob-
viously a problem with total flexibility because all the 
machines are available for each operation (Uik = U). 

3.2 Encoding 

As mentioned above, fJSP is a combination of as-
signment and scheduling decisions. It is rather easy to 
represent the machine selection in a chromosome. We 
can simply record the index of the machine assigned for 
an operation in the place where the operation is indi-
cated in a chromosome. Originally, the encoding ideas 
of fJSP are followed Cheng et al. (1996, 1999)’s re-
search work on a tutorial survey of GA for JSP. 

Once the assignment decision has been made, fJSP 
reduces to JSP. Hence, the representation schemes de-
signed for JSP can be used directly to represent the 
scheduling decision in fJSP. Permutation representation 
is perhaps the most natural representation of operation 
sequence, where operations are represented by their op-
eration ID and listed in the order in which they are 
scheduled. Unfortunately, because of the existence of 
the precedence constraints, not all the permutations of 
natural numbers define feasible schedules. During the 
past few years, the following representations for JSP 
have been proposed (Gen et al., 2008). 

 
Parallel machine representation (PM-R) 
The chromosome is a list of machines placed in parallel. 
For each machine, we associate operations to execute. 
Each operation is coded by three elements: operation k, 
job Ji, and S

ikjt  (starting time of operation oik on the ma-
chine Mj). 
Parallel job representation (PJ-R) 
The chromosome is represented by a list of jobs. Infor-
mation of each job is showed in the corresponding row 
where each case is constituted of two terms: machine Mj 
which executes the operation and corresponding starting 
time tikj

S. 
Kacem’ approach 
Kacem et al. (2002b) proposed a new coding: operations 
machine coding (OMC). It consists in representing the 
schedule in table S = (sikj). The case sikj = 0 indicates that 
the kth operation of job i(oik) is not processed on machine 
j(Mj). In case Mj is assigned for oik, sikj is filled with the 
couple (sik, cik), where sik is the starting time and cik is 
the completion time.  

 
Priority rule-based representation (PDR) 
In Tanev et al. (2004), a PDR-based indirect representa-
tion of the schedule for a real-world fJSP is used, where 
the alleles in chromosome represent the PDR used for 
assigning the order to the specified machine. Each chro-
mosome (the genotype) is represented as a string g0, g1, 
g2, …, gN-1, where N is the amount of submitted orders. 
Schedule builder implements the gene expression mecha-
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nism by mapping the chromosome into the correspond-
ing schedule (the phenotype) during the chromosome 
evaluation phase. Each of the genes of the chromosome 
is interpreted by schedule builder as follows: “for the 
currently becoming free machine Mk, select all the un-
scheduled orders that can be currently processed on Mk 
and range them in accordance with the gi

th PDR; then 
select the first order oj from the arranged list of un-
scheduled orders and assign oj to Mk.”  

Yang (2001) proposed a new GA-based discrete 
dynamic programming (DDP) approach for generating 
static schedules in a FMS environment. Given a se-
quence of jobs, the operations are scheduled using heu-
ristic method, in which DDP is used to reduce the calcu-
lations required to schedule the operations of jobs. 
Hence, the chromosome only needs to represent the job 
sequence.  

 
Multistage operation-based approach 
Zhang and Gen (2005) invented an effective approach to 
represent the chromosome and also proved to get better 
performance in solutions. An example of multistage 
operation-based encoding is shown in Figure 2. Also 
they reported an effective designing chromosome for 
optimizing advanced planning and scheduling problem 
(Brandimarte, 1993). 
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Figure 2. Multistage operation-based representation of 

flexible job-shop scheduling problem. 

3.3 Test Problems 

Because GAs are of the kind of possibility search-
ing techniques, experiments are necessary in order to 
test the efficiency of those algorithms. Test problems 
used in the early works, e.g., (Dauzere-Pares and Paulli, 
1997; Gao et al., 2006) are taken as benchmarks for the 
successive works. Realistic FMS contexts usually have 
many more complexities that must be handled during 
the static scheduling. Other factors that could be of im-
portance are the setup times at each station, the number 

of loading and unloading docks available, the time taken 
by each dock to perform its loading and or unloading 
operation, the topology and buffer capacities of the ma-
terial handling systems, and the transfer time from one 
station to another (where applicable). For example, the 
transfer times between different stations are considered 
in Kacem et al. (2002b), and randomly generated test 
problems are used to test the efficiency of the proposed 
approach. Moreover, genetic techniques have all been 
proven to be effective methods for multiobjective opti-
mization problem. In Yang (2001), the objective consid-
ered is to minimize the overall completion time (make-
span), the total workload of machines and the workload 
of the most loaded machine. A 10-job 10-machine prob-
lem is presented by Kacem et al. (2002b). 

Table 2 illustrates the results comparing with other 
researcher’s approaches with proposed approach in Gao 
et al. (2006) by using published for the benchmark prob-
lems, where “a” denotes the approach “AL+CGA” pro-
posed by Kacem et al. (2002b), while “b” denotes the 
approach “PSO+SA” proposed by Xia and Wu (2005). 

 
Table 2. Results comparing with other approaches 

 sGA AL+CGAa PSO+SAb Proposed 
approach

Makespan 7 7 7 7 
WT 53 45 44 43 

Max (Wk) 7 5 6 5 
GA: genetic algorithm, AL: approach by localization, CGA: 
controlled genetic algorithm, PSO: particle swarm optimiza-
tion, SA: simulated annealing. 

4.  AGV DISPATCHING MODELS 

4.1 Background and Mathematical Model 

For a recent review on AGV problems and issues, 
the reader is referred to Vis (2006), Le-Ahn and De 
Koster (2006), Lim (2004), and Hwang et al. (2002). An 
AGV is a driverless transport system used for horizontal 
movement of materials. AGVs were introduced in 1955. 
The use of AGVs has grown enormously since their 
introduction. AGV systems are implemented in various 
industrial contexts: container terminals, part transporta-
tion in heavy industry, manufacturing systems (Kim and 
Hwang, 1999). In fact, new analytical and simulation 
models need to be developed for large AGV systems to 
overcome: large computation times, NP-completeness, 
congestion, deadlocks and delays in the system and fi-
nite planning horizons (Kim and Hwang, 2001; Moon 
and Hwang, 1999; Proth et al., 1997). 

We consider a dispatching AGV system that each 
AGV transports the material (or semi-product) between 
working stations. Assumptions considered in this paper 
are as follows: 
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1) AGVs only carry one kind of products at the same 
time.  

2) A network of guide paths is defined in advance, 
and the guide paths have to travel through all of 
pickup/delivery points. 

3) The vehicles are assumed to travel at a constant 
speed.  

4) The vehicles just can travel forward, not backward.  
5) As many vehicles travel on the guide path simul-

taneously, collisions be avoided by hardware, not 
be considered in this paper.  

6) On each working stations, there are pickup space 
for store the operated material and delivery space 
for store the material for next operation.  

7) The operation can be started any time after an 
AGV take the material to come. And also the 
AGV can transport the operated material form the 
pickup point to next delivery point any time. 

 
In this paper, the problem is to dispatch AGVs for 

transports the product between different machines in a 
FMS. At first stage, we model the problem by using 
network structure.  

Assumptions considered in this paper are as fol-
lows:  
For scheduling: 

1) In a FMS, n jobs are to be scheduled on m ma-
chines.  

2) The ith job has ni operations that have to be proc-
essed.  

3) Each machine processes only one operation at a 
time.  

4) The set-up time for the operations is sequence- 
independent and is included in the processing time.  

For AGV dispatching: 
1) Each machine is connected to the guide path net-

work by a pick-up/delivery (P/D) station where 
pallets are transferred from/to the AGVs. 

2) The guide path is composed of aisle segments on 
which the vehicles are assumed to travel at a con-
stant speed. 

3) As many vehicles travel on the guide path simul-
taneously, collisions be avoided by hardware, not 
be considered in this paper. 

 
Subject to the constraints that, 

For scheduling:  
1) The operation sequence for each job is prescribed; 
2) Each machine can process only one operation at a 

time; 
3) Each AGV can transport only one kind of prod-

ucts at a time. 
For AGV dispatching:  

1) AGVs only carry one kind of products at same 
time.  

2) The vehicles just can travel forward, not backward.  
 
The objective function is minimizing the following 

two criteria: 
1) Time required to complete all jobs (i.e., make-

span): tMS 
2) Number of AGVs: nAGV 

 
The notation used in this paper is summarized in 

the following: 
 

Indices 
i,  i' :index of jobs, i,  i' = 1, 2, …, n; 
j,  j' :index of processes, j,  j' = 1, 2, …, n; 

 
Parameters 

n  : total number of jobs; 
m  : total number of machines; 
ni  : total number of operation of job j; 

ijo  : the jth operation of job i; 
ijp  : processing time of operation ijo ; 

ijM  : machine assigned for operation ijo  
ijT  : transition task for operation ijo ; 

ijt :  transition time from 1−ijM  to ijM ; 
 
Decision variables 

ijx  : assigned AGV number for task ijT  
S
ijt  : starting time of task ijT ; 
S
ijc  : starting time of operation ijo ; 

 
Example 1: An FMS has four machines 1, 2, 3, and 4. 
Three job types J1, J2, and J3 are to be carried out, and 
Table 3 shows the requirements for each job (Naso and 
Turchiano, 2005).  

 
The first process of J1 is carried out at machine 1 

with p11 (60 processing times). The second process of J1 
be carried out at machine 2 with p12 (80 processing), this 
table also gives the precedence constraints among the 
operations Oij in each job Ji. For instance, the second 
process of J1 can be carried out only after the first proc-
ess of J1 is complete. Notice that J2 has only two proc-
esses to be completed. Figure 3 shows Gantt chart of the 
schedule of Example 1 without considering AGVs routing.  

 
Table 3. Job requirements of Example 1 (Goncalves et al., 

2005) 

Oij Mij pij 
      Pj 
Ji P1 P2 P3 P4 P1 P2 P3 P4

J1 1 2 3 4 60 80 100 70
J2 4 3 - - 100 40 - - 
J3 1 4 2 - 70 20 50 - 

Mij: machine # of assigned Pj-th operation Oij of job Ji. 
pij: processing time of operation Oij. 
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Figure 3. Gantt chart of the schedule of Example 1 without 

considering automatic guided vehicles routing. 
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For designing an AGV system in manufacturing 
system, the transition time tuv/cvu between pick-up point 
on machine u and delivery point on machine v are de-
fined in Table 4, and they depend on Naso and Tur-
chiano (2005). We give a layout of facility for Example 
1 in Figure 4. Note, although the network of guide paths 
is unidirectional, it has to take a very large transition 
time from pickup point (P) to delivery point (D) on 
same machine. It is unnecessary in the real application. 
So we defined an inside cycle for each machine, that is 
the transition time is the same as P to D and D to P. We 
give a routing example to carry out job J1 by using one 
AGV in Figure 5. 

 
Definition 3: A node is defined as task Tij that presents a 
transition task of jth process of job Ji for moving pick-up 
point of machine Mi, j-1 to delivering point of machine 
Mij.  

 
Definition 4: An arc can be defined as many decision 
variables such as capacity of AGVs, precedence con-
straints among the tasks, costs of movement. In this pa-
per, we defined an arc as precedence constraint, and 
give a transition time cjj’ from delivery point of machine 
Mij to pick-up point of machine Mi’j’ on the arc.  

 
Table 4. Transition time between pick-up point on machine 

u and delivery point on machine v 

Machine number 
tuv/cuv 

Loading/
Unloading 1 2 3 4 

Loading/Unloading 1/1 1/7 8/13 16/23 18/20
1 13/18 3/3 2/9 10/19 13/18
2 18/22 22/28 2/2 4/13 12/18
3 8/14 12/20 18/26 3/3 2/10

Machine 
number 

4 5/7 9/12 15/18 23/28 2/2
tuv: transition time from pick-up point on machine u to delivery 

point on machine v. 
cuv: transition time from delivery point on machine u to pick-

up point on machine v. 
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Figure 4. Layout of facility. P: pick-up point, D: delivery 

point. 
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Figure 5. A routing example for carry out job J1 by using 
one automatic guided vehicle: (a) illustration of 
facility layout, (b) illustration of transition flow, 
and (c) symbol definitions. P: pick-up point, D: 
delivery point. 
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Figure 6. Illustration of problem representations. 
 

Definition 3: We define the task precedence for each 
job. 

Job J1: 11 12 13 14T T T T  
Job J2: 21 22T T  
Job J3: 31 32 33T T T  
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Figure 7. Illustration of the network structure of Example 1. 
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We can draw a network (as Figure 7) depending on 
the precedence constraints among tasks {Tij}. The objec-
tive of this network problem assigns all of tasks to sev-
eral AGVs, and gives the priority of each task to make 
the AGV routing sequence. A result of Example 1 is 
shown as follows, and the final time required to com-
plete all jobs (i.e., makespan) is 321, and 3 AGVs are 
used. Figure 8 shows the result on Gantt chart. 

 
AGV1: 11 12 13 14→ → →T T T T  
AGV2: 21 22→T T  
AGV3: 31 32 33→ →T T T  
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Figure 8. Gantt chart of the schedule of Example 1 with 
considering automatic guided vehicles (AGVs) 
routing (el: AGV). Based on operations process-
ing (a) and AGVs dispatching (b). 

 
The AGV dispatching problem can be formulated 

by the multiobjective optimization model as follows:  
 

{ },MS , ,0min max
i i ni

S
i n Mi

t t t= +  (11) 

{ }AGV ,
min max iji j

n x=  (12) 

, 1 , 1s.t. , , 2, ,S S
ij i j i j ij ic c p t i j n− −− ≥ + ∀ = L  (13) 

( )' ' ' ' ' ' 0S S
ij i j i j ij i jc c p M M− − + Γ − ≥ ∨  (14) 

( )' ' ' ' 0 , ( , ), ( ', ')S S
i j ij ij ij i jc c p M M i j i j− − + Γ − ≥ ∀  

( )' ' ' ' ' ' 0S S
ij i j i j ij i jt t t x x− − + Γ − ≥ ∨  (15) 

( )' ' ' ' 0 , ( , ), ( ', ')S S
i j ij ij ij i jt t t x x i j i j− − + Γ − ≥ ∀  

( ), ' ' ' ' ' ' 0
i

S S
i n i j i j ij i jt t t x x− − + Γ − ≥ ∨  (16) 

( )' ' , ' ' 0 , ( , ), ( ', ')
i

S S
i j i n i ij i j it t t x x i n i j− − + Γ − ≥ ∀  

, 1 , ,S S
ij i j ijc t p i j+≥ − ∀  (17) 

0, ,ijx i j≥ ∀  (18) 
0, ,S

ijt i j≥ ∀  (19) 

where Γ is a very large number, and ti is the transition 
time for pick-up point of machine 

, ii nM  to delivery point 
of loading/unloading. Inequality (13) describes the op-
eration precedence constraints. In inequities (14)-(16), 
since one or the other constraint must hold, it is called 
disjunctive constraint. It represents the operation un-
overlapping constraint (Inequality 14) and the AGV non-
overlapping constraint (Inequalities 15, 16). 

4.2 Priority-Based GA 

For solving the AGV dispatching problem in FMS, 
the special difficulty arises from 1) the task sequencing 
is NP-hard problem, and 2) a random sequence of AGV 
dispatching usually does not correspond to the operation 
precedence constrain and routing constrain. 

In this paper, we firstly give a priority-based en-
coding method that is an indirect approach: encode some 
guiding information for constructing a sequence of all 
tasks. As it is known, a gene in a chromosome is charac-
terized by two factors: locus, i.e., the position of gene 
located within the structure of chromosome, and allele, 
i.e., the value the gene takes. In this encoding method, 
the position of a gene is used to represent task ID and its 
value is used to represent the priority of the task for con-
structing a sequence among candidates. A feasible se-
quence can be uniquely determined from this encoding 
by considering operation precedence constraint. An ex-
ample of generated chromosome and its decoded path is 
shown in Figure 9, for Example 1 (in Section 2). 

 

493862751Priority :

987654321Task ID :

493862751Priority :

987654321Task ID :

333231222114131211 TTTTTTTTT →→→→→→→→  
Figure 9. Example of generated chromosome and its 

decoded task sequence. 
 
At the beginning, we try to find a task for the posi-

tion next to source node s. Task T11, T21, and T31 (task 
ID: 1, 2, and 3) are eligible for the position, which can 
be easily fixed according to adjacent relation among 
tasks. Their priorities are 1, 5, and 7, respectively. The 
node 1 has the highest priority and is put into the task 
sequence. The possible tasks next to task T11, is task T12 
(task ID: 4), and unselected task T21 and T31 (task ID: 2 
and 3). Because node 4 has the largest priority value, it 
is put into the task sequence. Then we form the set of 
tasks available for the next position and select the one 
with the highest priority among them. Repeat these steps 
until all of the tasks are selected, 

 
11 12 13 14 21 22 31 32 33→ → → → → → → →T T T T T T T T T  

 
After generating the task sequence, we secondly 

separate tasks to several groups for assigning different 
AGVs. First, separate tasks with a separate point in which 
the task is the final transport of job i form pick-up point 
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of operation 
, ii nO  to delivery point of loading/unloading. 

Afterward, unite the task groups in which finished time 
of a group is faster than the starting time of another 
group. The particular is introduced in next subsection. 
An example of grouping is shown as follows by using 
the chromosome (Figure 9), for Example 1. 

 
AGV1: 11 12 13 14→ → →T T T T  
AGV2: 21 22→T T  
AGV3: 31 32 33→ →T T T  

4.3 Case Study 

For evaluating the efficiency of the AGV dispatch-
ing algorithm suggested in a case study, a simulation 
program was developed by using Java on Pentium 4 
processor (3.2-GHz clock). The problem was used by 
Yang (2001) and Kim et al. (2004). GA parameter set-
tings were taken as follows: population size, popSize = 
20; crossover probability, pC = 0.70; mutation probabil-
ity, pM = 0.50; immigration rate, μ = 0.15. 

In a case study of FMS, 10 jobs are to be scheduled 
on 5 machines. The maximum number process for the 
operations is 4. Table 5 gives the assigned machine 
numbers and process time. And Table 6 gives the transi-
tion time among pick-up points and delivery points. 
Depending on Naso and Turchiano (2005), we give a 
layout of facility for the experiment in Figure 10. 

 
Table 5. Job requirements of Example 2 

Oij Mij pij 
      Pj 
Ji P1 P2 P3 P4 P1 P2 P3 P4

J1 1 2 1 - 80 120 60 - 
J2 2 1 - - 100 40 - - 
J3 5 3 3 - 70 100 70 - 
J4 5 3 2 2 70 100 100 40
J5 4 2 - - 90 40 - - 
J6 4 4 1 2 90 70 60 40
J7 1 3 - - 80 70 - - 
J8 5 4 5 4 70 70 70 80
J9 5 4 1 - 70 70 60 - 
J10 5 1 3 - 70 60 70 - 
 

Table 6. Transition time between pick-up point u and 
delivery point v 

tuv/cuv 
Loading/ 

Unloading M1 M2 M3 M4 M5

Loading/ 
Unloading 1/1 1/7 8/13 14/18 16/23 18/20

M1 13/18 3/3 2/9 8/14 10/19 13/18
M2 18/22 22/28 2/2 2/7 4/12 12/18
M3 13/11 17/22 24/29 1/1 1/6 7/11
M4 8/14 12/20 18/26 24/29 3/3 2/10
M5 5/7 9/12 15/18 19/23 23/28 2/2
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M2M4
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Loading / 
Unloading
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DP  
Figure 10. Layout of facility. P: pick-up point, D: delivery 

point. 
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Figure 11. Illustration of the network structure of 

Example 2. 
 
We can draw a network (as Figure 11) depending 

on the precedence constraints among tasks {Tij} of Ex-
ample 2. The best result of Example 2 is shown as fol-
lows, and the final time required to complete all jobs 
(i.e., makespan) is 574, and 4 AGVs are used. Figure 12 
shows the result on Gantt chart. 

 
AGV1: 11 22 41 81 91 82 92 83 84→ → → → → → → →T T T T T T T T T  
AGV2: 21 41 12 15 10,2 52 71 44→ → → → → → →T T T T T T T T  
AGV3: 61 62 63 64 43 72→ → → → →T T T T T T  
AGV3: 31 32 10,1 33 13 10,3 93→ → → → → →T T T T T T T   
 

For this case, the makespan and the number of 
AGVs used are two conflicting elements. Yet, we can 
use 4 AGVs to achieve the minimum makespan, that is, 
more AGVs are no use in decreasing the makespan. 
When we use three or less AGVs, the makespan is unac-
ceptably long, hence 4 vehicles is quite a satisfactory 
number of AGVs used. To test the performance of our 
algorithm, it is necessary to conduct larger-size prob-
lems and more realistic factors should be considered. 
These issues are among our future research subjects. 
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Figure 12. Gantt chart of the schedule of Example 2 with 
considering automatic guided vehicles (AGVs) 
routing. Based on operations processing (a) and 
AGVs dispatching (b). 

 
Lin et al. (2012b) recently proposed a random key-

based PSO algorithm with crossover and mutation op-
eration to avoid premature convergence and to maintain 
diversity of the swarm. Numerical analyses for case 
study show the effectiveness of the proposed approach 
comparing with GA. 

5.  ADVANCED PLANNING AND 
SCHEDULING MODELS 

5.1 Background and Mathematical Model 

Recently, Gen et al. (2009b) surveyed EAs in APS. 
The APS problem includes finding the optimal resource 
selection for operations, operations sequences, alloca-
tion of variable transfer batches, and schedules consider-
ing flexible flows, resources status, capacities of plants, 
precedence constraints, and workload balance. The rela-
tionship between all the main parts of APS problems in 
MPC is shown in Figure 13. We find the process is 
driven since the orders come from our customer. More-
over, to satisfy the requirements, some other constraints 
should be considered such as due date, set-up time and 
shipping time. The main integrated model involves the 
time allocation for operations based on the selected op-
erations sequences to minimize the makespan. Thus, the 
operations sequencing problem should be integrated into 
the scheduling problem. We allow any two operations 
belonging to the same order proceed concurrently if re-
sources are available. In multi-plant environment, we 
should also consider the situation of outsourcing that 
means the same order can also be delivered to some 
other plant for assigning the resources in different loca-

tions; therefore, a lot of orders can be divided further for 
the subsequent operations if it is allowed by the load 
size of transfer device. In this case, the transfer batch 
and process batch may not coincide. On the other hand, 
if inter-plants transportation is needed, then the transfer 
batch should be equal to the process batch. 
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Figure 13. Modern advanced planning and scheduling 

system. 
 
To clearly demonstrate the process planning in the 

APS problem in detail, we create a simple example shown 
in Figure 14, which presents the two kinds of materials 
to be machined in a modern manufacturing system with 
the lot sizes 40 and 50 orders by the customer. Con-
cretely, 10 volumes should be removed from two mate-
rials for obtaining the final two products. All the manu-
facturing plans of this example are offered in Table 7, 
which includes all the types of operations and the corre-
sponding machine selection. 

 
Order 1 Order 2

o11
o13

o12

o14
o15

o21

o23

o22
o24

o25

Product 1 Product 2

Order 1 Order 2

o11
o13

o12

o14
o15

o21

o23

o22
o24

o25

Product 1 Product 2  
Figure 14. Simple example for process planning problem. 

 
In Figure 15, we describe the operation sequence 

constrains of the two orders by using node graphs, and, 
we can confirm that the operation sequence follows 
some precedence constraints for each order. For instance, 
in order 1: both {o11, o13, o12, …} and {o11, o12, o13, 
…} are legal, while {o13, o11, o12, …} is illegal. 

Tables 8 and 9 prepare the data set of processing 
time for each operation and transition time between dif-
ferent machines. Table 9 shows that five machines have 



Gen and Lin: Industrial Engineering & Management Systems 
Vol 11, No 4, December 2012, pp.310-330, © 2012 KIIE 322
  

 

different capabilities for each corresponding operation, 
and are not available for some of them. In addition, con-
cerning this simple processing planning example, we do 
not consider the setup time, and both of the orders are 
completed in one plant. 

 
Table 7. Manufacturing plan 

Operation Index 
(Order k, Operation  

Oki) 

Operation 
Type 

Machine 
Selection 

Mm 
1(1, o11) 
2(1, o12) 
3(1, o13) 
4(1, o14) 
5(1, o14) 

milling 
milling 
dilling 
milling 
dilling 

M1, M4 

M1, M4 

M2, M3, M5 

M1 

M2 
6(2, o21) 
7(2, o22) 
8(2, o23) 
9(2, o24) 
10(2, o25) 

milling 
milling 
milling 
dilling 
dilling 

M1, M2 

M1, M3 

M3, M5 

M1, M4, M5 

M1, M2 
 

o22 o24

1

o11

3

o13

2

o12

4

o14

5

o15

o25

7

6

o21

8

o23

9

10

Order 1 Order 2

o22 o24o22 o24

1

o11

3

o13

2

o12

4

o14

5

o15

o25

7

6

o21

8

o23

9

10

Order 1 Order 2

1

o11

3

o13

2

o12

4

o14

5

o15

o25

7

6

o21

8

o23

9

10

Order 1 Order 2  
Figure 15. Operation precedence constraints of two orders. 

 
Table 8. Processing time pkim of operations 
 Order 1 Order 2 

       Operation 
Machine 1 2 3 4 5 6 7 8 9 10

M1 7 7 - 6 - 3 8 - 10 6
M2 - - 6 - 9 5 - - - 5
M3 - - 5 - - - 12 5 - -
M4 5 6 - - - - - - 10 -
M5 - - 8 - - - - 8 7 -

 
Table 9. The transition time 

S
tmn  between different machines 

          Mn   
Mm M1 M2 M3 M4 M5 

M1 - 7 27 26 17 
M2 19 - 15 19 10 
M3 5 17 - 36 27 
M4 8 20 4 - 30 
M5 18 18 14 5 - 

Available capacity 1500 1500 1500 1500 1500
 
A process plan should also be able to represent all 

the possible precedents that occur during the planning 
and processing decisions. From an unordered set of op-
erations with precedence relations, the operations sequ-

encing is to determine a sequence considering the com-
bination of parallel processes and alternative resources 
for operations. Nevertheless, we should clarify that the 
simple example in this section only indicates the plan-
ning horizon in a single plant, while the APS in multi-
plant chain will be solved in the experimental section.  

As shown previously, the objective of an APS sys-
tem in a multi-plant chain is usually to determine an 
optimal schedule with operation sequences for all the 
orders (jobs). That is, the problem we are treating can be 
defined as: there are a set of K orders which are to be 
processed on N machines with alternative operations 
sequences and alternative machines for operations in the 
environment of the multi-plant chain, we want to find an 
operations sequence for each job and a schedule in 
which jobs pass between machines and a schedule in 
which operations on the same jobs are processed such 
that it satisfies the precedence constraints and it is opti-
mal with respect to the makespan minimization. 

 
To formulate the mathematical model, some nota-

tions and symbols are defined firstly as follows:  
 

Indices 
i, j: index of operation number, i, j = 1, 2, …, Jk  
k, l: index of orders, k, l = 1, 2, …, K  
m, n: index of machines, m, n = 1, 2, …, N 
d, e: index of plants , d, e = 1, 2, …, D 

 
Parameters 

K: number of orders 
D: number of plants 
N: number of machines 
Ok: set of operations for order k, i.e.,  
Ok = {oki|i = 1, 2, …, Jk} 
oki: the ith operation for order k 
Jk : number of operations for order k 
Mm: the mth machine  
qk: lot size of order k 
Am: set of operations that can be processed on 

machine m 
pkim: unit processing time of operation oki on machine 

m 
Lm: capacity of machine m 
rkij: precedence constraints 

1,    if  is predecessor of  in order 
0,                                 otherwise            

ki kj
kij

o o k
r

⎧
= ⎨
⎩  
1,    if  is predecessor of  in order 
0,                                 otherwise            

ki kj
kij

o o k
r

⎧
= ⎨
⎩  

bmd: capability of resources in plant d 
1,    if th machine  belongs to plant 
0,                               otherwise            md

m d
b

⎧
= ⎨
⎩  

U
kiljt : set-up time from operation oki to operation olj  

ukij: unit load size of order k from operation oki to op-
eration okj 

cM: total makespan for all the orders 
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dD: due date 
Bd: set of machines that are included in plant d 
tmn : unit shipping time between machine m to 

machine n 
, if resources   and  are included in the same plant,

, otherwise.

S
mn

mn D
mn

t m n
t

t

⎧⎪= ⎨
⎪⎩

 

vkij: number of shipping times from operation oki to 
operation okj 

,  if resources   and  

            are included in the same plant,

1, otherwise.

k

kij

kij

q m n
u

v

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎢ ⎥⎪= ⎨
⎪
⎪
⎪⎩

 

Tkij: transition time from operation oki to operation okj 

1 1
{ }

N N U
kij k kim kim kij mn kim kjn kij kij

m n
T q p x v t x x t y

= =
= + +∑ ∑  

cki : completion time of operation oki  

1

N

ki ki k kim kim
m

c s q p x
=

= + ∑
  

 
Decision variables 

1,   if opration  is performed 
       immediately before operation  

0,  otherwise

ki

kilj lj

o
y o

⎧
⎪

= ⎨
⎪
⎩

  

1,   if machine   is selected for operation 
  

0,  otherwise
ki

kim

m o
x

⎧
= ⎨

⎩
 

ski : starting time of operation oki  
 
The objective to APS problem in this paper is to 

minimize total makespan tM, the overall model can be 
described as follows: 

 
min { }M ,  

max  kik i
c c=  (20) 

s. t. ( ){ }U 0     ( , ), ( , ),lj ki kilj kim ljm kiljs c t x x y k i l j m− + ≥ ∀  (21)  

( ){ } 0S
kj ki kij kim mn kij kim kjns s u p t r x x− + + ≥  (22)  

, , , , ,  di j k m n B d∀ ∀ ∈ ∀  

( ){ }S 0kj kij kjn ki mn kij kim kjnc u p c t r x x− − + ≥  (23)  
, , , , ,di j k m n B d∀ ∀ ∈ ∀  

( ){ } 0D
kj ki mn kij kim kjns c t r x x− + ≥  (24) 

, , ,  ,  ,  ,d ei j k m B n B d e∀ ∀ ∈ ∀ ∈ ∀  

1 1
         

kJK

k kim kim m
k i

q p x L m
= =

≤ ∀∑∑  (25) 

0            , ,kij kjkir y i j k= ∀  (26) 
0           ,kikiy i k= ∀  (27) 

1      ( , ), ( , ),  ( , ) ( , )kilj ljkiy y k i l j k i l j+ = ∀ ≠  (28) 

1
1             ,

N

kim
m

x i k
=

= ∀∑  (29) 

0          ( , ) ,  kim mx k i A m= ∀ ∉ ∀  (30) 

0                   ,kis i k≥ ∀  (31) 
{ }0, 1          ( , ), ( , )kiljy k i l j∈ ∀  (32) 
{ }0, 1           , ,kimx i k m∈ ∀  (33) 

 
Eq. (21) imposes that for any resource (machine), it 

cannot be selected for one operation until the predeces-
sor is completed and also set-up time must be consid-
ered (Figure 16). 

Eqs. (22) and (23) impose the transportation in-
stances in local plant. Both of the two constraints must 
be satisfied simultaneously to ensure operations can be 
run uninterrupted on one machine (Figure 17). 

 
 

oljokiMm

cki s lj

U
kiljt

 
Figure 16. Time chart for the constraints on the same 

machine. 
 

S
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Figure 17. Time chart for the constraints in the same plant. 

 
Eq. (24) restricts the other transportation between 

different plants (in MPC environment), which indicates 
that the operation cannot move to another plant until all 
the lot size have been finished (Figure 18). 

 

okj

okiMm

cki skj

D
mnt

plant d:

Mnplant e:

 
Figure 18. Time chart for the constraints in different plants. 

 
Eq. (25) restricts the available capacity for each ma-

chine. Eq. (26) ensures that the precedence constraints 
are not violated. Eqs. (27) and (28) ensure the feasible 
operation sequence. Eqs. (29) and (30) ensure the feasi-
ble resource selection. Eqs. (31)–(33) impose nonnega-
tive condition. 
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5.2 Multistage Operation-Based GA 

Following the development of GA, neither the op-
timization of GA’s parameter (crossover rate and muta-
tion rate) setting, nor the approach of GA’s operators 
(crossover approach and mutation approach) can signifi-
cantly improve the effectiveness of the algorithm. Hence, 
more and more researchers tried to find an optimal de-
signing of chromosome, which contains more informa-
tion and can also improve both effectiveness and effi-
ciency of the algorithm to the corresponding combinato-
rial optimization problem. Especially, some researchers 
used two dimensional schemes: Ulusoy et al. (1997) used 
a two-array representation (one for operation sequencing 
and the other for AGV assignment), Goncalves et al. 
(2005) also used a two string representation, one for 
operation priorities and the other for delay times.  

Originally, our idea of moGA comes from the basic 
concept of a multistage decision making model shown 
in Figure 19. There are several stages separating the 
route from the starting node to the terminal node, and in 
each stage several states are offered to be chosen from. 
After we make all the decisions for choosing states, we 
can draw a solution, and the fitness of the result is in 
terms of the different decisions made along the route. 
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・ ・ ・

Sｊ Sｊ+1

ts

 
Figure 19. Basic concept of multistage decision making 

model. 
 
Such kind of optimization has already been used in 

Zhang and Gen (2005), especially for solving fJSP. 
Since both operation sequence and machine selec-

tion can affect the solution in an APS problem, the 
chromosome presentation of moGA for APS problems 
consists of two parts: 

• Priority-based encoding for operation sequence; 
• Machine permutation encoding for machine selec-

tion; 
Phase 1: Sequencing Operations 

Phase 1 is a procedure to get a feasible fixed opera-
tion sequence, hence we input the operation set for all 
the orders, and the precedence constraints in each order. 
After legalization (making precedence feasible), we can 

output the legal fixed operation sequence. 
In this phase, we use the priority encoding proce-

dure to formulate chromosomes, and draw a chromo-
some for the simple example in Section 2 as shown in 
Figure 20. 

 

10283649715Priority  v1  (j):

10987654321Node ID  j   :

10283649715Priority  v1  (j):

10987654321Node ID  j   :

 
Figure 20. Chromosome v1 drawn by priority-based en-

coding. 
 
Following the precedence constraints, one feasible 

operation sequence for the simple example in Section 2 
will be obtained as follows: 

 
a final feasible path = (v2, v1, v6, v7, v9, v3, v8, v4, v5, v10) 
operation sequences = {o12, o11, o21, o22, o24, o13, o23, o14, o15, o25} 
 
Phase 2: Selecting Machines 

After finishing Phase 1, we draw a fixed operation 
sequence, which means that the position of all stages 
(operations) has been decided. Hence, in Phase 2 we 
input the fixed operation sequence, processing time data, 
setup time data, and transition time.  

 
Phase 3: Designing Schedule 

After assigning states (machines) in Phase 2, we 
will output the whole schedule in Gantt chart with a 
solution of makespan. 

Since the APS problem involves the flexible ma-
chine selection, we use a machine permutation coding 
procedure in this paper to make another part of the 
chromosome. That is, we will firstly build a multistage 
operation-based frame shown in Figure 21.  
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Figure 21. Node graph of machine selection in multistage 

operation-based genetic algorithm. 
 
It is obvious to find the number of stages is just the 

total operation number, and also in each stage, the ma-
chines available are treated as the corresponding state. 
We can randomly generate second moGA chromosome 
as follows in Figure 22. 

So, we can assign the machine selection to the 
fixed stage sequence offered by Phase 1, and finally 
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draw the feasible solution as follows: 
 
Schedule:  
S = {Order 1, Order 2} 

= {(o12, M4: 0-240), (o11, M4: 240-440),  
(o13, M3: 294-494), (o14, M1: 469-709),  
(o15, M2: 536-896), (o21, M2: 0-250),  
(o22, M1: 69-469), (o24, M4: 440-940),  
(o23, M5: 650-1050), (o25, M2: 828-1128)} 

 

1451221344machine v2(j):

10987654321Node ID j   :

1451221344machine v2(j):

10987654321Node ID j   :

 
Figure 22. Chromosome v2 drawn by machine permutation 

encoding. 
 
After calculating the makespan using the data in 

Tables 8 and 9, we can draw the Gantt chart shown in 
Figure 23. 
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Figure 23. Gantt chart for the best solution. 

5.3 Case Study 

In this model, we firstly consider a relatively small 
size problem with 2 plants with 6 resources to treat four 
orders. The lot sizes for the orders are q = (40, 70, 60, 
30) and each plant has three resources. Plant 1 = {M1, 
M2, M3} and Plant 2 = {M4, M5, M6}. Their available 
capacities are: 

 
1 2 31000,  1000,  2000,  L L L= = =  

4 2000,L = 5 2000,L = 6 2000,L =  
 
The unit load size for transportation is assumed to 

be 10 for all orders. The operations and their precedence 
constraints for the 4 orders are given in Figure 24. The 
transportation times between resources are given in Ta-
ble 10, and the processing times for each operation and 
their alternative resources are given in Table 11. The 
set-up times between operations are given in Table 12. 
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Figure 24. Operation precedence constraints. 

 
The transportation time D

mnt  per trip between plants 

is assumed to be 50, and the unit size per trip is equal to 
the lot size of each order. To solve the problem using 
the moGA approach, the genetic parameters are set to 
maximum generation, maxGen = 200; population size, 
popSize = 100; crossover probability, pC = 0.7; and mu-
tation probability, pM = 0.3. 

 
Table 10. Transition time S

mnt  between machines 

Plant 1  Plant 1  M1 M2 M3   M4 M5 M6

M1 0 5 6  M4 0 5 6
M2 5 0 7  M5 5 0 7Plant 1
M3 6 7 0  

Plant 2 
M6 6 7 0

Available 
capacity 100010002000  Available 

capacity 200020002000

 
Table 11. Processing time pkim for operations in alternative 

machines 

 Order 1 Order 2 Order 3 Order 4 
operation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1 7 7 - 6 - 3 8 - 10 6 15 - - - - - 5
M2 - - 6 - 9 5 - - - 5 - 6 - 5 - 5 -Plant 1
M3 - - 5 - - - 12 5 - - - - 6 - 6 - -
M4 5 6 - - 8 - 9 - 10 - 6 - 6 - 4 3 -
M5 - - 8 - - 6 - 8 - 6 - 5 - 9 - - 4Plant 2
M6 - - - 5 - - 8 - 7 - 5 - 8 - - 5 -

 
Table 12. Set-up time 

U
kijt  between operations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 - 17 36 6 37 20 11 30 5 32 30 36 23 21 1 28 20
2 42 - 32 3 2 15 15 22 44 39 30 37 47 12 5 38 31
3 6 6 - 37 26 0 23 29 12 5 13 3 13 24 29 26 8
4 12 3 40 - 19 46 31 30 31 49 49 27 39 45 9 0 3
5 2 48 43 25 - 49 10 11 4 8 17 39 34 31 11 0 24
6 24 26 43 31 49 - 22 31 21 43 31 10 30 23 2 34 38
7 20 45 28 43 22 16 - 39 46 25 43 34 9 22 38 12 7
8 15 41 44 35 14 10 30 - 2 14 7 8 22 3 18 45 18
9 25 47 22 21 47 39 26 0 - 22 33 7 37 20 25 20 7
10 3 46 9 10 35 18 5 21 24 - 33 40 22 23 41 37 31
11 1 17 31 3 30 15 23 21 37 3 - 15 23 32 3 46 6
12 4 18 41 37 26 39 43 46 44 28 13 - 45 47 7 32 2
13 18 45 24 27 47 21 8 21 35 38 26 39 - 21 2 12 33
14 48 37 46 44 25 24 1 8 38 46 48 37 6 - 6 41 10
15 43 3 39 3 44 17 46 24 46 33 9 16 15 4 - 4 12
16 9 44 40 21 16 12 36 37 44 16 41 31 7 3 8 - 44
17 14 21 5 29 44 48 8 31 10 44 1 7 18 2 11 22 -

 
The makespan of the best solution is 1102, with the 

corresponding chromosomes and schedules are shown as 
follows: 
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S = {Order 1, Order 2, Order 3, Order 4}  
= {(o11, M4: 0-200), (o12, M4: 217-457),  

(o13, M3: 551-751), (o14, M6: 893-1093),  
(o22, M1: 0-210), (o21, M2: 35-665),  
(o23, M1: 232-792), (o31, M3: 0-300),  
(o33, M5: 350-710), (o32, M6: 452-872),  
(o34, M4: 578-938), (o35, M5: 750-1050),  
(o41, M6: 0-240), (o42, M2: 696-846),  
(o43, M3: 782-962), (o44, M2: 890-1040),  
(o45, M1: 952-1102)}. 

 
The best schedule in detail is shown in Table 13. 

Furthermore, we can also draw the resource utilization 
factor for this experiment shown in Figure 25. As in the 
Gant chart shown in Figure 26, we compare the best 
results with the solution obtained by Moon-Kim-Gen’s 
approach (Moon et al., 2004). The figure obviously pre-
sents the reason why they miss chances to find the best 
solution. It is because they only consider the minimum 
processing time. For example, operations in order 4 
changed plants twice, but the best schedule of ours only 
once. They neglected the transportation time between 
plant 1 and plant 2.  

Moreover, we set the parameter pC = 0.7 (for cross-
over), pM = 0.3 (for mutation), but changing the maxGen 
and popSize into 4 different tests within each experi-
mental dataset, the comparison of the results is shown in 
Table 14. 

 
Table 13. Best schedule 

Plant d Machine Mm Operation Oki (start time-finishing time) 

Plant 1 
M1 
M2 
M3 

o22(0-210) 
o21(35-665)
o31(0-300) 

o23(232-792) 
o42(696-846) 
o13(551-751) 

o45(952-1102)
o44(890-1040)
o22(782-962)

Plant 2 
M4 
M5 
M6 

o11(0-200) 
o33(3500-710) 

o41(0-240) 

o12(217-457) 
o35(750-1050) 
o32(452-872) 

o34(578-938)
 

o14(893-1093)
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Figure 25. Resource utilization. 

 
Furthermore, to prove the efficiency of our ap-

proach, we compared our experimental results with 
Moon-Kim-Gen’s approach (Moon et al., 2004) by us-
ing the same experimental data. All the data in shadow 
and marked with “*” are best known solution (by enu-
merative algorithm operated on multiprocessor computer). 

The solution shown in Table 15 illustrates that using 
moGA can get better solution in some large cases. That 
means, in some large cases, the assignment of machines 
may not obey the strategy for minimum processing time 
selection. 
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Figure 26. Gant chart of the best schedule. moGA: multi-

stage operation-based genetic algorithm.  
 

Table 14. Experimental result comparisons for different 
maxGen and popSize 

No. of
orders

No. of
operations

No. of
plants

No. of 
machines maxGen popSize CM 

4 17 2 6 

100 
100 
200 
500 

20 
50 
100 
100 

1102* 

1102* 

1102* 

1102*

5 21 2 6 

100 
100 
200 
500 

50 
100 
100 
100 

1402
1370*

1370* 

1370*

8 33 3 9 

100 
100 
200 
500 

50 
100 
100 
150 

1680
1557
1513*

1513*

15 64 3 9 

200 
200 
500 
500 

50 
100 
100 
150 

3408
2356
2239
2207*

29 124 5 15 

200 
200 
500 
500 

50 
150 
150 
200 

3106
2920
2862
2798*

 
Table 15. Comparisons of experimental result 

No. of
orders

No. of 
operations

No. of
plants

No. of 
machines 

Moon-Kim- 
Gen’s approach moGA

4 
5 
8 
15 
29 

17 
21 
33 
64 
124 

2 
2 
3 
3 
5 

6 
6 
9 
9 
15 

1207 
1561 
1902 
2640 
3246 

1102*

1370*

1513*

2207*

2798*
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6. CONCLUSION 

In this survey paper, we addressed MOGAs for 
three crucial issues in the manufacturing scheduling 
including the mathematical models, GA-based solution 
methods and case studies. 

The fJSP is expanded from the traditional JSP, 
which possesses wider availability of machines for all 
the operations. Firstly, with loss of generality, we con-
sidered the total flexibility of fJSP, assuming that each 
operation is achievable on any machine. We presented 
an effective genetic approach to represent the chromo-
some and also proved to get better performance in solu-
tions. We also gave the performance of the proposed 
method in comparison with other algorithms. 

Secondly, we focused on the simultaneous schedul-
ing and routing of AGVs in a FMS. We modeled an 
AGV system by using the network structure. This net-
work model of an AGV dispatching has simplexes deci-
sion variables that consider most AGV problem’s con-
straints. For applying a genetic approach to this multi-
criteria case of AGV problem that minimizes time re-
quired to complete all jobs (i.e., makespan) and mini-
mizes the number of AGVs, simultaneously, a priority-
based GA had been proposed. Numerical analyses for 
case study proved the effectiveness of the proposed ap-
proach. 

Thirdly, we have addressed the moGA approach to 
solve the APS problems in multi-plant chain. In order to 
minimize the makespan, we should find an optimal re-
source selection for assignments and operations se-
quences simultaneously. Hence, we used the concept of 
multistage to formulate an efficient model, and divided 
the problem into 2 main phases by analyzing the charac-
ter of APS problems. The results of various sizes of nu-
merical experiments have demonstrated the efficiency of 
moGA by comparing it with the previous methods. 
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