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Abstract 
 

The performance of evolutionary algorithms can be seriously weakened when constraints limit 
the feasible region of the search space. In this paper we present a constrained multi-objective 
optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve 
distribution and convergence of the obtained solutions. First of all, as a novel constraint 
handling technique, ε-truncation technique keeps an effective balance between feasible 
solutions and infeasible solutions by permitting some excellent infeasible solutions with good 
objective value and low constraint violation to take part in the evolution, so diversity is 
improved, and convergence is also coordinated. Next, an exponential variation is introduced 
after differential mutation and crossover to boost the local exploitation ability. At last, the 
improved crowding density method only selects some Pareto solutions and near solutions to 
join in calculation, thus it can evaluate the distribution more accurately. The comparative 
results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the 
other algorithms and it gains better in terms of convergence in some extent. 
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1. Introduction 

In general, constrained multi-objective optimization problems (CMOP) can be defined as 
follows. 
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where X=(x1,x2,…,xn) is a n-dimensional decision vector, and Ω is the decision space. lk and uk 
are the lower and upper bound of xk for k=1,…n. The objective vector F(X): Ω→Rm consists of 
m real-valued objective functions and Rm is the objective space. gi(X)≤0, i=1,…p is the ith 
inequality constraint, and hj(X)=0, j=1,…q is the jth equality constraint. 

The constraint violation is a scalar value of the constraint violation function which can be 
formulated as: 
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Therefore, a solution X is called the feasible solution when it satisfies all constraint 
conditions. Otherwise, X is called the infeasible solution. All the feasible solutions constitute 
the feasible region S and S∈Ω. 

Definition 1 (Pareto domination). Given two decision vectors X1, X2∈S, X1 is said to 
dominate X2, denoted by X1  X2, if and only if fi(X1)≤fi(X2) for every i∈{1,2,...,m} and 
fj(X1)<fj(X2) for at least one index j∈{1,2,...,m}.  

Definition 2 (Pareto solution). A decision vector X*∈S is Pareto optimal to (1) if there is 
no solution X∈S such that X X*.  

Definition 3 (Pareto set, PS). Pareto set is defined as: PS={X∈Ω|X is Pareto optimal}. 
Definition 4 (Pareto front, PF). Pareto front is defined as: PF={F(X)∈Rm|X∈PS}. 
Compared with unconstrained multi-objective optimization problems (MOPs), less work 

have been done for solving CMOPs. In fact, almost all CMOPs arising from the real-world 
applications have multiple objectives and exist some inequality or enquality constraints. Yet it 
is difficult to solve CMOPs, because finding feasible solutions may require additional 
computational resources. The main challenges in CMOPs are distinct limits on constraints, 
objectives, the interrelationship between objectives and constraints. Due to the extensive 
applications and great challenges, CMOPs have gradually caused concern. 

The research of CMOPs mainly refers to the evolutionary algorithms (EAs) and the 
constraint handling techniques [1]. The EAs mainly include genetic algorithm, evolutionary 
programming and evolutionary strategy [2]. There were some other swarm intelligence EAs 
like ant colony algorithm [3], particle swarm [4], cultural algorithm [5], differential evolution 
[6], artificial bee colony [7], gravitational search algorithm [8], biogeography based 
optimization [9] and teaching-learning-based optimization [10]. In contrast, there’s not a lot of 
research about the following EAs yet very promising. Deb [11] proposed an improved 
NSGA-II as NSGA-III, which replaced the crowding distance in NSGA-II with a clustering 
operation by series of evenly distributed reference lines. Hereafter, a fitness function similar to 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019                            5491 

penalty-based boundary intersection (PBI) function was developed to strength selection 
pressure for NSGA-III [12]. Zhang suggested a multi-objective evolutionary algorithm based 
on decomposition (MOEA/D) [13], which decomposed a MOPs into a group of sub-problems 
with single-objective and then simultaneously evolved these sub-problems. So far, studies 
based on MOEA/D have been gradually received attention. For instance, it has combined with 
swarm intelligence [14], local search strategy [15], and adaptive mechanism [16]. 

Constraint handling techniques, as the other important branch in CMOPs, have developed 
from penalty function method [17], [18], stochastic ranking [19], [20], feasibility rule [21], 
[22] to multi-objective optimization [23], [24], ε-constraint [25], dual population storage [26], 
and so on. The penalty function methods had the advantage of simple operation [27], yet it was 
difficult to set up suitable penalty coefficient, which was too small might lead to local 
optimum or too large might slow down evolution. To overcome above shortcomings of 
penalty function methods, stochastic ranking [28] was proposed to balance the objective 
functions and the constraints. But key parameter pf played a great impact on the results of 
different problems. Feasibility rule [29] emphasized that the feasible solutions were always 
better than the infeasible solutions. The popularity of this simple constraint handling method 
lied on its ability to be coupled to various algorithms, without introducing additional 
parameters. However it was likely to fall into premature convergence on highly constrained 
problems. Multi-objective optimization method [30] transformed the constraints into one or 
more new objectives, so the CMOPs was changed into the unconstrained MOPs. Some 
research results [31] had shown that multi-objective optimization method was not the best 
choice for handling CMOPs. The ε-constraint [32] coordinated the relationship between 
feasible solutions and infeasible solutions, so it could ensure diversity of the evolution 
population. The feasible solutions and the infeasible solutions were respectively stored by two 
populations in the dual population storage [33], which could avoid the direct comparison 
between them. Therefore, the diversity would be strengthened by infeasible solutions. 

The core of CMOP algorithms is how to coordinate diversity and convergence. We need to 
make the balance between the objectives and the constraints, the coordination between 
feasible solution and infeasible solution. To this end, a constrained multi-objective 
optimization algorithm based on adaptive ε truncation is proposed to achieve effective balance 
between diversity and convergence. Our main contributions have three aspects. Firstly, 
ε-truncation operation is motivated by strength and weakness of two advanced constraint 
handling techniques (ε-constraint and dual population storage). The ε-constraint emphasizes 
one-to-one replacement. However when substituted individual is located in sparse region, the 
selection strategy lacks ability of diversity maintenance. So ε-constraint emphasizes more 
convergence than diversity. Dual population storage implicitly maintains the diversity by 
getting infeasible solutions involved in the evolution. But whether the infeasible solutions are 
conserved in the infeasible solution set is completely determined by their constraint violation. 
In such case, the presence of infeasible solution with poor objective values will lead to 
reducing search efficiency. We aim to coordinate the relationship between feasible solutions 
and infeasible solutions, through preferentially selecting the feasible Pareto optimum solutions 
and infeasible solutions which own the lower constraint violation and the better objective 
value. Thus, both diversity and convergence are considered in the proposed ε-truncation 
technique. Secondly, the improved crowding density estimation only selects a part of Pareto 
individuals and the near individuals to participate in calculation. It not only reduces amount of 
computation, but also eliminates harmful effect of distant individuals and weak individuals. So 
it can assess the diversity more accurately. Finally, exponential variation is introduced after 
crossover and mutation operation. Some studies have revealed that crossover and mutation 
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operation in differential evolution algorithm can keep good diversity. And exponential 
variation is characterized by local search. Hence, integrating them will be able to balance the 
global exploration and the local exploitation. 

The remainder of this paper is organized as follows. Section 2 reviews the previous work in 
CMOPs. Section 3 describes the proposed ε-T-CMOA in detail. Section 4 presents the test 
problems, performance metric, parameter settings, parameter analysis, comparative 
experimental results and discussions, innovative point analysis. Eventually, conclusions and 
future work are drawn in Section 5. 

2. Related Work 
Despite a number of latest achievements, the research on CMOPs is far from being completely 
explored. Especially for CMOPs with severely constrained, multi-modal and 
high-dimensional, the existing CMOPs algorithms are still not powerful enough, and the 
requirement for more effective algorithms is pressing. In this section we mainly review related 
literature based on EAs and constrained handling techniques. 

An adaptive penalty function method was investigated in literature [34], where different 
fitness functions were constructed for the feasible solution and the infeasible solution 
according to their corresponding objective values and constraint violation. To some extent, the 
exploited infeasible solutions contributed to enlarging exploration scope. A constrained 
evolutionary multi-objective algorithm based on dual population storage was proposed in 
literature [26]. The feasible solutions were retained in feasible solution set. Meanwhile, the 
infeasible solutions with the smallest constraint violation were preferentially selected into 
infeasible set. Similarly, literature [35] suggested a constrained multi-objective algorithm with 
particle swarm. The Pareto optimal solutions in sparse region were favorably selected to enter 
feasible solution set, and the infeasible solutions with both the better objective value and the 
lager crowing distance were choose to enter infeasible solution set. Thanks to the participation 
of the excellent infeasible solutions and the feasible Pareto solutions, diversity and 
convergence have been effectively balanced. A novel constraint handling technique called 
optimal sequence was presented in literature [36], where objective function, diversity metric 
and constraint violation were aggregated to form a new fitness function, so elite selection, 
diversity and feasibility had got coordinated. Although it saved the amount of computation, 
convergence was not accurate. Literature [37] developed a collaborative evolutionary 
algorithm based on dual population storage. The feasible solutions evolved toward optimality 
while the infeasible solutions evolved toward feasibility. It realized information sharing, 
subsequently the diversity was reinforced. 

Up to present, MOEA/D has been successfully applied to MOPs. However, only little 
research solves CMOPs by means of MOEA/D. This may be owing to the trouble in 
coordinating diversity with convergence when fitness landscape is severely constrained. 
Literature [38] had combined ε-constraint with MOEA/D for the first time. But it missed a part 
of Pareto solutions on the problems that their PF consisted of a set of discrete points. Similar 
ideas could be found in literature [23], where CMOPs was decomposed into several 
sub-problems, and each sub-problem corresponded a sub population. Then, all populations 
were optimized collaboratively. Literature [39] integrated MOEA/D with stochastic ranking 
and feasibility rule. Yet the issue that multiple sub problems corresponded to the same optimal 
individual would seriously affect diversity. 
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3. Proposed Algorithm 

Double population storage and ε-constraint are two kinds of advanced constraint handling 
techniques. The double population storage only uses constraint violation to update the 
infeasible solution set, which leads to preserving the individuals of poor objective value. 
Thereby, evolutionary efficiency and convergence speed are hindered. The ε-constraint 
coordinates feasible solutions and infeasible solutions by adjusting parameter ε. But its 
one-to-one replacement mechanism may result in loss of a part of Pareto solutions. Because if 
replaced individuals are located in sparse areas, the search will lose these areas. In this section, 
a new constrained handling technique called adaptive ε-truncation is suggested to better 
balance diversity and convergence. 

3.1 Adaptive ε-Truncation 
Definition 5 (ε-truncation set). Given a population P⊂Ω, ε-truncation set (P≤ε) is defined 

as: P≤ε={X∈P|G(X)≤ε}, and P>ε is defined as: P>ε={X∈P|G(X)>ε}. 
Definition 6 (ε-truncation operation). Let P⊂Ω be a population at generation t, dividing P 

into P≤ε and P>ε is called ε-truncation operation. 
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where Gmax represents the maximum generation, ε(t) is the truncation level in generation t and 
ε(0) is initial truncation level, N is the population scale.  

Property 1. When ε=0, P≤ε is a feasible solution set, and P>ε is an infeasible solution set. 
Proof. As ε=0, through definition 5 and definition 6, P≤ε indicates the set in which constraint 

violation equals to zero. Thus, P≤ε is a feasible solution set, similarly P>ε represents an 
infeasible solution set in which constraint violation is greater than zero. 

Property 2. The double population storage is a special case of adaptive ε-truncation. When 
ε=0, the properties of adaptive ε-truncation is same as double population storage. 

Proof. Suppose ε=0, according to properties 1, P≤ε is a feasible solution set and P>ε is an 
infeasible solution set. Therefore, the adaptive ε-truncation can be seen as double population 
storage.  

The comparison between adaptive ε-truncation and double population storage are 
discussed as follow. Similarities: 1) Both of them store individuals in two populations, and 
diversity can be enhanced by allowing infeasible solutions taking part in the evolution; 2) 
They can avoid direct comparison of the feasible and infeasible solutions. Actually it’s 
difficult to compare feasible solutions with excellent infeasible solutions in a quantitative way. 
Differences: 1) Dual population storage is the special case of adaptive ε-truncation when ε is 
equal to zero. 2) The adaptive ε-truncation retains a small number of excellent infeasible 
solutions in the evolution population, however dual population storage conserves infeasible 
solutions by infeasible solution set. 3) In the early, ε is relatively large in adaptive ε-truncation. 
So the infeasible solutions with the better objective value can be exploited to expand the 
exploration range, and the diversity will be enhanced. Meanwhile, feasible Pareto solutions are 
reserved to ensure convergence. In the later, ε gradually tends to zero with evolutionary 
generation increasing, there will be more Pareto optimal solutions in the population. Therefore, 
much more attention is paid to convergence than diversity. We can see that ε-truncation 
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strategy is self-adapting and owns the strong ability of balancing diversity and convergence. 
The comparison between ε-truncation and ε-constraint is described as follow. 

Similarities: Both of them can effectively coordinate feasible solutions and infeasible 
solutions by permitting some infeasible solutions to participate in the evolution, and then they 
can improve the diversity; Differences: 1) It’s convenient for adaptive ε-truncation to integrate 
other tactics such as niche and crowding density estimation, which help to improve 
distribution of the evolution population. 2) The ε-constraint is based on one-to-one 
comparison rule. Although it accelerates the convergence rate, it causes to lose some 
individuals located in sparse region, and hampers the population diversity. Nevertheless, 
adaptive ε-truncation bases on set selection operation which can maintain good diversity by 
introducing improved crowding density estimation. 

3.2 Evolutionary Process 
The key to evolutionary process lies in balance of exploration and exploitation. However, 

generally these two are conflicting. Therefore, it not only needs to strengthen the exploration 
and improve the diversity, but also enhance the local exploitation for enhancing the search 
efficiency. To better coordinate exploration and exploitation, we adopt random selection of 
basis vectors and difference vectors to increase disturbance, so as to improve diversity. 
Besides, after the differential mutation and crossover [40], we introduce exponential variation 
[41] to enhance exploitation. The mutation operator and crossover operator are respectively 
shown as formula (4) and (5). 

1 1 2 3 2 4 5( ) ( )i r r r r rF F= + × − + × −V X X X X X                              (4) 
where F is a scaling factor, Xr1, Xr2 Xr3, Xr4 and Xr5 are distinct vectors and r1, r2, r3, r4 and r5 
are diverse integers chosen from the set {1,2,…N}. Vi=(Vi,1,Vi,2,…,Vi,n) is a mutation vector. 
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where CR is a single parameter within the interval (0, 1), which controls the fraction of vector 
components inherited from the mutation vector. Vi=(Vi,1,Vi,2,…,Vi,n) is a crossover vector. Vi,j 
is the jth dimension of Vi , and Xi,j is the jth dimension of Xi. 

Some studies have shown that differential mutation and crossover possess good ability of 
diversity maintenance. However, when dealing with complex CMOPs, differential evolution 
strategy has the problems of low convergence accuracy and slow convergence rate. The reason 
is that exploitation ability of differential evolution is insufficient. For the purpose of 
improving local exploitation ability, exponential variation is used after differential mutation 
and crossover, as shown in the formula (6). 
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Nevertheless, the jth dimension of * * * *
,1 ,2 ,( , ,..., )i i i i n=X X X X  may be out of range [lj,uj], so a 

repairing operation is required, as shown in the formula (7). 
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3.3 Elitist Selection Based ε-Truncation 
The N individuals are generated through evolutionary operation to form an offspring 

population (Ot). Then the offspring population and the parent population (Pt) are merged to 
produce a combined population (Ct) which comprises 2N individuals. Subsequently adaptive 
ε-truncation divides Ct into two populations (P≤ε and P>ε). 
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where N1 is the scale of the ε-truncation set (P≤ε). 
So an important question to ask is ‘how to select N individuals as the next generation 

population (Pt+1)?’. It consists of three kinds of cases: 
Case one: When |P≤ε|>N, we need to choose N individuals from P≤ε as a next generation 

population. 
The individuals with the higher Pareto level and the greater crowding density should be 

chosen preferentially. First of all, the fast non-dominated sorting [42] is used to classify P≤ε 
into F1,F2,…,Fk as shown in Fig. 1. 
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Fig. 1. Pareto level graph 

 
Next, the several levels F1,F2,...,Fs (1≤s≤k) are identified to make the total number (Ns) of 

individuals greater than or equal to N. If Ns is exactly equal to N, F1,F2,...,Fs are regarded as the 
next generation population. Otherwise, it needs to calculate the crowding density of all the 
individuals in Fs by formula (10). Afterward, N-(Ns-|Fs|) individuals that possess the most 
largest crowding density in Fs are combined with F1,F2,…,Fs-1 to become the next generation 
population. It is noteworthy that, the crowding density of all border solutions (block label in 
Fig. 1) in Fs is defined as infinity so as to ensure them to enter the next generation, and thereby 
the exploration range is broadened. 
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where N is the scale of the evolution population, di,j is on behalf of Euclidean distance between 
individual Xi and Xj in objective space. 

Because the formula (10) has considered Euclidean distance between the individual Xi and 
all the other individuals in the population, the amount of calculation is heavy, and distant 
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individuals or weak Pareto level individuals will produce negative influence. Therefore, it 
leads to the calculation deviation and reduces the diversity. 

For this purpose, an improved crowding density formula is proposed as formula (11). 

,1 , , 1 ,1 , ' , 2

1 2
1 1 1 1 1 1... ... ... ...

i

i i j i T i i j i T

T Td

d d d d d d

= +
+ + + + + + + +

                          (11) 

where T1=T2=|Fs|0.5/2, and di,j represents the jth nearest Euclidean distance between Xi and the 
all individuals in the population, and di,j’ indicates the jth nearest Euclidean distance between Xi 
and these individuals whose Pareto level is not inferior to Xi. 

It is clear that T1 and T2 are much smaller than N in formula (11), thereby computing cost is 
effectively decreased compared to formula (10). Furthermore, selecting the nearest T1 
individuals will decrease influence of the distant individuals, and choosing the T2 individuals 
will eliminate effect of the individuals with weak Pareto level. Hence, the distribution of the 
individuals can be accurately reflected via the formula (11), and diversity will be kept well 
subsequently. 

Case two: When |P≤ε|=N, P≤ε is used as the next generation population. 
Case three: When |P≤ε|<N, both N-|P≤ε| individuals with the lowest constraint violation in 

P>ε and P≤ε are regarded as the next generation population. This case indicates that the feasible 
region is likely to be relatively small, so only a small number of feasible solutions are 
generated in the evolution. Thus, it should put more emphasis on the search for the feasible 
solutions. Then the retention of infeasible solutions with the lower constraint violation can 
urge the evolution to close to the feasible region in a certain extent. 

3.4 Process of the Proposed Algorithm 
For ease of understanding, this section provides specific steps of the ε-T-CMOA, and the 

flowchart is as shown in Algorithm 1. 
 

Algorithm 1: Framework of the proposed ε-T-CMOPA
Input
   Gmax: the maximum evolution generation
   N: the size of population
   F: the scaling factor
   CR: the crossover probability
   η: the exponential factor
   pm: the variation factor

Output
  P: the final population found by ε-T-CMOPA

1: P0 ← Initialize Population
2: t=0
3: While t≤Gmax
4:     Ot ← Create offspring population by Evolution process
5:     Ct ← Pt∪Ot

6:     P≤ε and P>ε ← Execute ε-truncation 
7:     Pt+1 ← Elitist selection based ε-truncation
8: End  

Step 1: Parameters Initialization, including the maximum generation (Gmax), the size of 
population (N), the scaling factor (F), the crossover probability (CR), the exponential factor 
(η), and variation factor (pm); 
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Step 2: Generate the initial population P0 that includes N individuals, the jth dimension xj of 
each individual Xi=(x1,x2,...,xn) is produced by xj=lj+rand()×uj, j=1,2,...,n, i=1,2,...,N, rand() is 
a random number in the interval [0,1]; 

Step 3: Execute the evolution operation, and generate the offspring population (Ot); 
Step 4: Combine the parent population (Pt) with Ot, and calculate the constraint violation 

and objective function value of the combined population (Ct); 
Step 5: Utilize adaptive ε-truncation to divide Ct into two sets (P≤ε and P>ε); 
Step 6: Implement elitist selection based ε-truncation and select N individuals as the next 

generation population (Pt+1); 
Step 7: Judge whether the Gmax is satisfied? If so, output the Pareto optimal individual in the 

population; if not, go to step 3. 

4. Experimental Classification Results and Analysis 

4.1 Test Problems 
The PC Configuration are system: Windows XP_SP3; RAM: 2G; CPU: G620; CPU 2.60 

GHz; Computer Language: MATLAB 2010. As a basis for the comparisons, some 
well-known test problems, CTP2-CTP7 [43] and CF1-CF5 [44], are involved. 

In CTP2-CTP7 series, parameter a controls distance from feasible region boundary to the 
PF; Parameter b controls the number of discrete region of the PF; Parameter c controls 
uniformity degree of the PF, if c=1, the PF is evenly distributed, else if c<1, the PF is close to 
the direction in f1, else the PF moves toward to f2; Parameter d controls length of the PF; 
Parameter e controls position of the feasible boundary; Parameter θ controls slope of the PF. 

In CF1-CF5 series, the number of decision variable is 10, and the number of objectives is 2. 
Thecorresponding PF lies in fi∈[0,1]. The test problems relate to the PF that has discrete 
points (CF1), convex (CF2), concave (CF3), continuous (CF4, CF5), disjointed (CF1, CF2, 
CF3), differently scaled (CF2, CF3, CF4, CF5). 

4.2 Performance Metric 
In order to evaluate the performance of the related algorithms, the performance metrics are 

required. However, none of the existing performance metrics can authoritatively appraise both 
the diversity and the convergence of the obtained non-dominated solutions. Therefore, one 
must exercise various metrics in the performance evaluation of algorithms. In this paper, we 
have chosen the generational distance (GD) [34] which is widely used as an indicator for 
assessing the convergence, and the spacing (SP) [34] which reflects the diversity on 
CTP-series test problems. Simultaneously, the inverse generational distance (IGD) [44] which 
indicates a combined measure of both diversity and convergence are employed on the 
CF-series test problems. 
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where N is the number of the obtained solution set (Pkonw), p=2, di,i=1,2,…,N indicates the 
nearest Euclidean distance between Xi in Pkonw and the all solutions in PF. It is needless to say 
that the smaller GD denotes better convergence. 
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where N is the number of the obtained solution set, '

1
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= ∑ . Obviously, the SP is smaller, the distribution is better.  

Supposing that P is a set of uniformly distributed points in the PF, and S is the obtained 
solution set, IGD metric is defined as follows: 

1PF
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n
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d v S
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where NPF is the number of the points in P, and d(vi,S) is the minimum Euclidean distance 
between vi and the solutions in S. 

Since PF of CTP3 and CTP4 are composed of multiple discrete points, and PF of CTP5 
consists of a continuous region and a plurality of discrete points, so it is inappropriate for using 
the SP to measure distribution. Thus, CTP2-CTP7 series test problems are divided into two 
groups in this paper: CTP2, CTP6 and CTP7 are taken as group 1, CTP3, CTP4 and CTP5 are 
seen as group 2. The number of discrete points and the GD are respectively employed to 
measure distribution and convergence in group 1, and similarly the SP and the GD in group 2. 
In CF1-CF5 series test problems, we will use IGD statistics for comparing results. 

4.3 Experimental Settings 
All the experimental settings in the proposed algorithm are listed as the following. 
1) Number of runs: Each algorithm is run 30 times independently for each test instance. 
2) Termination criterion: The termination condition of an algorithm is specified in the form 

of the maximum number of generations (Gmax). We use the same Gmax for 3000 in all problems. 
3) Population size: The setting of population size N is 100 in all problems. 
4) Parameters for evolution process: F=0.5, CR=0.9, pm=1/n, η=20. 
5) Significance test: To test differences in statistical significance, the Conover-Inman 

procedure is applied with 5% significance level in the Kruskal-Wallis test [45] for all pairwise 
comparisons. 

4.4 Parameter Analysis 
The key parameters F and CR have a direct impact on evolution. Thus, this section discusses 

how F and CR affect the results of SP and GD on the test problem CTP2. All experiments run 
independently for 10 times and contrast experiment results have shown in Fig. 2- Fig. 5. 

F controls search scope, so it modulates the exploration ability of population. The lager F 
value introduces better diversity, but it will hamper the convergence. In contrast, although the 
smaller F value speeds up the convergence, it weakens the diversity and the algorithm may fall 
into local optima. When F ranges from 0.4 to 0.6 in Fig. 2, the distribution of obtained solution 
set is the best. Beside, as F equals to 0.5, ε-T-CMOA provides with the optimal stability. In 
Fig. 3, when F is between 0.2 and 0.5, the convergence of the obtained non-domination 
solutions looks better. However, the performance deteriorates with increasing F.  

CR controls the weight of variation individual in the crossover individual. As CR becomes 
smaller, the proportion of variation individual becomes fewer. Correspondingly diversity will 
be decreased. However, bigger CR slows down the convergence. In Fig. 4, the distribution of 
non-domination solutions get better when CR is from 0.6 to 1.0. However as CR becomes 
smaller, the distribution tends poorer. In Fig. 5, when CR is at interval [0.5, 1.0], the 
convergence performs well. Therefore, the bigger CR contributes to improve both diversity 
and convergence. 
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Fig. 4. Different CR for SP when F=0.5 on CTP2     Fig. 5. Different CR for GD when F=0.5 on CTP2 

4.5 Comparative Experiment on CTP2-CTP7 
The mean and standard deviation of the SP, the number of discrete points and GD indicator 

value over 30 independent runs are used in our experiment. In addition, to test the differences 
in statistical significance, the performance score [46] is adopted to reveal how many other 
algorithms significantly outperform the corresponding algorithm on the considered test 
problem, and the smaller score denotes the better algorithm. 

To verify ε-T-CMOA, the following six state-of-the-art algorithms are considered as the 
peer algorithms: 1) NSGA-II with constrained multi-objective optimization algorithm [42], is 
denoted as NSGA-II; 2) BB-MOPSO [35]. It makes use of dual populations storage as the 
constraint handling technique and PSO as the evolutionary process; 3) Literature [26]. The DE 
and dual population storage are combined to solve CMOP; 4) Literature [34]. The SBX 
crossover and mutation are applied to generate new solutions, and adaptive penalty function 
method is used to handle the constraints. 5) Literature [47]. The new objective values are 
served to select individuals to the next generation. 6) Literature [48]. A hybrid genetic 
algorithm is suggested based on the boundary simulation method and trie-tree data structure. 

Table 1 shows both the mean and the standard deviation (St.de) of SP and GD. It can be 
observed that, the mean of the SP of ε-T-CMOA are better than the other six kinds of 
algorithms on the test problems CTP2 and CTP6. They indicate that ε-T-CMOA keeps the 
better population diversity in the evolutionary process, and gains the well-distributed solutions. 
For test instance CTP7, ε-T-CMOA displays the optimal performance in the mean of GD, 
which discloses that the obtained solution set of ε-T-CMOA is nearest to PF. However, 
Literature [47] performs best in terms of mean of SP on CTP7, and it is slightly better than 
ε-T-CMOA. Literature [34] algorithm achieves the best mean of GD on the test problems 
CTP2, and Literature [48] gets the smallest mean of GD on the test problems CTP6. Finally, 
ε-T-CMOA has found the smallest St.de of the SP and GD in the group 1 that indicates the 
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optimal stability of our algorithm. 
 

Table 1. Performance metrics on the first group of test problems 

Problems Algorithm SP  GD 
Mean St.de  Mean St.de 

CTP2 

NSGA-II 2.5E-03[1] 1.5E-04 3.6E-04[3] 1.3E-05 
Literature [26] 7.4E-03[5] 2.7E-05 5.6E-04[3] 7.0E-07 
BB-MOPSO 8.1E-03[5] 4.1E-05 2.1E-03[6] 1.1E-04 

Literature [34] 3.0E-03[1] 1.3E-04 1.1E-04[0] 8.5E-06 
Literature [47] 2.2E-03[1] 3.4E-07 2.2E-04[3] 3.2E-06 
Literature [48] 2.6E-03[1] 7.6E-06 1.8E-04[1] 1.6E-09 

ε-T-CMOA 1.5E-03[0] 3.0E-08 1.6E-04[1] 6.2E-11 

CTP6 

NSGA-II 1.4E-02[3] 9.6E-04 8.5E-04[4] 6.5E-05 
Literature [26] 1.1E-01[3] 7.7E-02 9.6E-04[4] 8.1E-05 
BB-MOPSO 1.4E-01[3] 3.5E-01 8.0E-04[4] 6.0E-08 

Literature [34] 1.3E-02[3] 1.1E-03 5.6E-04[0] 9.2E-05 
Literature [47] 8.3E-03[0] 4.2E-05 5.8E-04[0] 4.9E-07 
Literature [48] 9.5E-03[1] 2.5E-06 5.4E-04[0] 7.8E-06 

ε-T-CMOA 8.0E-03[0] 1.3E-06 6.0E-04[3] 1.5E-09 

CTP7 

NSGA-II 2.3E-02[0] 3.7e-04 9.9E-04[2] 4.6E-06 
Literature [26] 2.5E-02[3] 1.8E-05 2.4E-04[0] 4.1E-10 
BB-MOPSO 5.1E-01[6] 1.9E-01 6.4E-02[6] 4.8E-05 

Literature [34] 2.6E-02[3] 1.6e-04 3.7E-03[5] 1.0E-07 
Literature [47] 2.1E-02[0] 2.3E-06 7.7E-04[2] 2.3E-08 
Literature [48] 2.2E-02[0] 7.3E-07 6.2E-04[2] 1.9E-09 

ε-T-CMOA 2.4E-02[3] 1.8E-08 2.3E-04[0] 1.1E-10 
 
Table 2 presents the mean and the St.de of the number of discrete points and GD in the 

group 2. It is clear that literature [26], BB-MOPSO and ε-T-CMOA have consistently found all 
14 discrete points in all 30 independent runs on the test problem CTP3, yet GD mean of 
ε-T-CMOA are much better than these algorithms. Literature [34] gets the good mean of GD 
on the test problem CTP3, but the mean of discrete points is just 9.90. Because of loss of 
diversity maintenance in Literature [34] algorithm, some search area has not been fully 
explored, as a result, it misses a portion of Pareto solutions in evolution. Literature [47] and 
Literature [48] obtain the same excellent GD as our algorithm on CTP3, while their SP are 
relatively weak. On the test problem CTP4, both the number of discrete points and GD of 
ε-T-CMOA are superior to other algorithms. For the test problem CTP5, ε-T-CMOA has 
found all 15 discrete points in 30 independent runs, which is significantly better than the other 
algorithms. Literature [47] acquires the best convergence precision and Literature [48] gets 
second, but their number of discrete points are poor. It reveals that the diversity maintenance 
in Literature [47] and Literature [48] is not enough.  

As can be seen from Table 1 and Table 2, ε-T-CMOA performs the best GD on CTP3, 
CTP4 and CTP7. These results empirically illustrate that the final obtained non-dominated 
solutions by ε-T-CMOA for these test problems approximate the PF very well. Meanwhile, 
ε-T-CMOA offers the best distribution on CTP2, CTP3, CTP4, CTP5 and CTP6 except CTP7. 
These results demonstrate that ε-T-CMOA has the good ability of maintaining diversity. Since 
CTP3, CTP4 and CTP7 consist of discrete solutions or disconnected regions, in order to 
approach their PF much diversity of population is required right from the beginning of the 
algorithmic runs. For this purpose, ε-T-CMOA allows excellent infeasible solution to join in 
the evolution, so search scope is enlarged. Besides, the feasible Pareto solutions provide the 
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power to move forward the PF. Therefore, the balance between diversity and convergence 
could be one of the reasons for better performance in ε-T-CMOA. 

 
Table 2. Performance metrics on the second group of test problems 

Problems Algorithm The number of discrete points  GD 
Mean St.de  Mean St.de 

CTP3 

NSGA-II 13.58[3] 0.7584 2.4E-03[2] 7.1E-04 
Literature [26] 14[0] 0 6.9E-03[6] 3.2E-08 
BB-MOPSO 14[0] 0 2.3E-03[2] 2.5E-08 

Literature [34] 9.90[6] 2.9014 2.6E-03[2] 7.4E-04 
Literature [47] 12.77[3] 0.5040 1.8E-03[1] 3.7E-08 
Literature [48] 13.46[3] 0.5824 2.1E-03[2] 1.4E-07 

ε-T-CMOA 14[0] 0 1.3E-03[0] 2.7E-007 

CTP4 

NSGA-II 12.30[3] 1.8654 2.5E-03[0] 7.8E-04 
Literature [26] 13.33[3] 0.2989 2.8E-03[3] 1.8E-06 
BB-MOPSO 13.67[0] 0.2299 2.9E-03[3] 2.1E-07 

Literature [34] 7.38[6] 2.9547 4.5E-03[6] 1.1E-03 
Literature [47] 11.60[3] 1.2205 2.8E-03[3] 5.9E-04 
Literature [48] 13.67[0] 0.2793 2.5E-03[0] 3.2E-07 

ε-T-CMOA 13.97[0] 0.0333 2.2E-03[0] 4.1E-07 

CTP5 

NSGA-II 13.52[2] 2.401 3.0E-04[0] 8.8E-05 
Literature [26] 14.27[1] 0.2023 9.2E-04[5] 3.4E-08 
BB-MOPSO 13.80[2] 0.5793 8.8E-04[5] 4.8E-08 

Literature [34] 9.50[6] 4.1367 4.7E-04[3] 1.9E-04 
Literature [47] 13.07[2] 1.1427 2.8E-04[0] 5.2E-08 
Literature [48] 13.67[2] 2.4082 3.0E-04[0] 2.8E-08 

ε-T-CMOA 15[0] 0 4.2E-04[3] 4.3E-09 
 
 

CTP2 CTP3 CTP4 CTP5 CTP6 CTP7
0

1

2

3

4

5

6

Test Problems

A
ve

ra
ge

 p
er

fo
rm

an
ce

 s
co

re

 

 

NSGA-II

Literature 26

BB-MOPSO

Literature 34

Literature 47

Literature 48

ε-T-CMOA

 
 

Fig. 6. Average score over CTP2-CTP7 test problems 
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Fig. 7. Ranking in the overall performance score for seven algorithms 

 
In order to better visualize the performance score in Table 1 and Table 2, Fig. 6 displays 

the performance over CTP2-CTP7. For the all test problems, ε-T-CMOA obtains good score. 
Finally, to quantify the overall performance of each algorithm on the all test problems, Fig. 7 
shows the average performance score of all six test problems for seven algorithms. According 
to Fig. 7, we conclude that ε-T-CMOA could get the optimal results. 

Fig. 8-Fig. 13 have shown the Pareto solutions obtained by ε-T-CMOA on the test problems 
CTP2-CTP7. Among them, the gray area represents the feasible region, and the asterisk 
(electronic version in blue) represents Pareto optimal solutions.  

From Fig. 8 we can see that the PF of the test problem CTP2 consists of 13 disconnected 
areas. The non-dominated solutions found by ε-T-CMOA converge well to the PF and gain the 
good distribution. The PF of the test problem CTP3 comprises 14 discrete points as shown in 
Fig. 9. All the algorithms have found the optimal solutions in all 30 independent runs except 
NSGA-II, Literature [47] and Literature [48], which indicates a need to strength the diversity 
for these algorithms. In Fig. 10, the PF of the test problem CTP4 is composed by 14 discrete 
points, which are located in boundary of feasible region with longer tip compared to the test 
problem CTP3. Thus, it is more difficult to be solved. The ε-T-CMOA has found all the 
discrete points in 29 independent runs. The Pf of the test problem CTP5 includes a continuous 
region and 15 discrete points (see Fig. 11). The ε-T-CMOA consistently obtains all the 
discrete points in 30 independent runs. Fig. 12 shows that the feasible region of the test 
problem CTP6 involves a series of discrete strip-shaped region and the PF of CTP6 locates at 
the lowest position of the feasible region. Hence, the search must pass through different 
feasible region and eventually approach to PF, so it is easy to fall into local convergence. 
However, all algorithms have converged to the PF with good distribution. As can be seen from 
Fig. 13, the PF of the test problem CTP7 is formed by five regional components and a discrete 
point. And all the algorithms have made good distribution and convergence. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019                            5503 

f1

f 2

CTP2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

  f1

f 2

CTP3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 
Fig. 8. Obtained solutions by ε-T-CMOA on 

CTP2 
Fig. 9. Obtained solutions by ε-T-CMOA on 

CTP3 

f1

f 2

CTP4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

  f1

f 2

CTP5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 
Fig. 10. Obtained solutions by ε-T-CMOA on 

CTP4   
Fig. 11. Obtained solutions by ε-T-CMOA on 

CTP5 

f1

f 2

CTP6

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

  f1

f 2

CTP7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 
Fig. 12. Obtained solutions by ε-T-CMOA on 

CTP6   
Fig. 13. Obtained solutions by ε-T-CMOA on 
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4.6 Comparative Experiment on CF1-CF5 
In this section, we have carried out further experiments between ε-T-CMOA and two good 

performers (LIULI [49] and MTS [50] on CEC 2009) on CF1-CF5. Table 3 compares the IGD 
statistics (all 30 independent runs) acquired from LIULI, MTS and ε-T-CMOA.  
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Table 3. The comparison of IGD for three algorithms 

Problems Algorithm Min Max Mean St.de 

CF1 
LIULI 0.000682 0.001147 0.000859 0.000110 
MTS 0.013855 0.023597 0.019187 0.002568 

ε-T-CMOA 0.000504 0.003366 0.001537 0.000680 

CF2 
LIULI 0.002733 0.013135 0.004203 0.002635 
MTS 0.004142 0.051816 0.026779 0.014715 

ε-T-CMOA 0.005912 0.006875 0.006374 0.000273 

CF3 
LIULI 0.090844 0.251884 0.182905 0.042127 
MTS 0.075301 0.142828 0.104460 0.015595 

ε-T-CMOA 0.070131 0.178339 0.156801 0.020042 

CF4 
LIULI 0.008964 0.023999 0.014232 0.003293 
MTS 0.008937 0.014276 0.011096 0.001369 

ε-T-CMOA 0.034653 0.041964 0.038480 0.001214 

CF5 
LIULI 0.058818 0.192996 0.109730 0.030676 
MTS 0.017565 0.027832 0.020780 0.002422 

ε-T-CMOA 0.052164 0.124174 0.089620 0.001444 
 
From Table 3, we can see that ε-T-CMOA has found substantially better mean and St.de of 

IGD than LIULI on the test problems CF1, CF3 and CF5. However, LIULI accomplishes 
better performance on the test problems CF2 and CF4. The ε-T-CMOA obtains the better 
results in terms of minimum and mean of IGD values than MTS on the test problems CF1-CF3, 
and the case is vice versa on the test problems CF4 and CF5. LIULI and MTS are essentially 
two advanced algorithms based on multi sub-populations. They evolve these sub-problems 
simultaneously by uniform weight vectors methods, which can maintain the diversity of 
population and approach the evenly distributed Pareto optimal solutions. Therefore, it may be 
the internal causes that LIULI and MTS gains slightly better results on continuous functions 
CF4 and CF5. However, the obtained St.de values by ε-T-CMOA on CF2, CF4 and CF5 have 
clear advantage, which indicates the optimal stability of ε-T-CMOA. 

Fig. 14-Fig. 18 present the non-dominated solutions obtained by ε-T-CMOA on the test 
problems CF1–CF5. These solutions are selected from the final population of the run with the 
best IGD among the 30 independent runs. It is obvious that ε-T-CMOA has gotten good 
convergence on the test problems CF1 and CF2 from Fig. 14 and Fig. 15.  
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Fig. 18. Obtained solutions by ε-T-CMOA for CF5 

 
In Fig. 16, the PF of the test problem CF3 is discontinuous and concave, so it could be 

harder than all other test problems to solve. Three algorithms do not completely converge to 
the PF. Thus, these algorithms need to further strengthen the exploration and exploitation 
capability. In Fig. 17 and Fig. 18, ε-T-CMOA acts relatively poorly similar to LIULI and MTS 
on test problems CF4 and CF5, because non-dominated solutions are not distributed evenly 
along the entire PF. 

In summary, compared with the test problems CTP2-CTP7, much more efforts should be 
paid to the test problems CF1–CF5. 

4.7 Validity verification of improved crowding density estimation 
To verify the effectiveness of the improved crowding density estimation, the original 

crowding density estimation (Equation 10) and improved crowding density estimation 
(Equation 11) are compared based the framework of ε-T-CMOA on the test problems 
CTP2-CTP7. They are abbreviated as original and improvement respectively. The contrastive 
experimental results are presented in Table 4-Table 6. 

Table 4 clearly shows that the SP of improvement is better than original on the test 
functions CTP2, CTP6 and CTP7. Especially on the test problem CTP7, distribution has been 
improved significantly. Thus, the improved crowding density estimation really performs well 
on diversity maintenance. Table 5 displays that the number of discrete points is almost the 
same between original and improvement. Both of them have found all the discrete points in 30 
times independent runs. In Table 6, all the mean GD values obtained by improvement are 
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smaller than original, particularly on the test problems CTP2 and CTP7. Finally the St.de 
values found by Equation 11 are generally better, which demonstrates enhancement of the 
algorithm stability. So the improved crowing density estimation plays an important role in 
improving diversity in ε-T-CMOA. Besides, the good diversity ensure eventually to come 
close to PF. 

 
Table 4. The comparison of SP between original and improvement 

Problems 
 Original  Improvement 
 Mean  St.de  Mean St.de 

CTP2   1.7E-03 3.8E-08 1.5E-03 3.0E-08 
CTP6   9.0E-03 9.6E-07 8.0E-03 1.3E-06 
CTP7   2.1E-01 2.9E-01 2.4E-02 1.8E-08 

 
Table 5. The number of discrete points between original and improvement 

Problems 
 Original  Improvement 
 Mean St.de  Mean St.de 

CTP3 14 0 14 0 
CTP4 14 0 13.97 0.0333 
CTP5 15 0 15 0 

 
Table 6. The comparison of GD between original and improvement 

Problems 
 Original  Improvement 
 Mean St.de  Mean St.de 

CTP2 1.8E-04 1.7E-10 1.6E-04 6.2E-11 
CTP3 1.5E-03 9.0E-08 1.3E-03 2.7E-07 
CTP4 1.0E-02 3.0E-05 2.2E-03 4.1E-07 
CTP5 4.6E-04 2.7E-09 4.2E-04 4.3E-09 
CTP6 6.7E-04 1.6E-09 6.0E-04 1.5E-09 
CTP7 8.2E-02 9.6E-04 2.3E-04 1.1E-10 

 

4.8 Validity verification of exponential variation 
To verify the effectiveness of the exponential variation, we carry out the comparative 

experiments between removal of exponential variation of ε-T-CMOA and ε-T-CMOA on the 
test problems CTP2-CTP7. They are abbreviated as original and improvement respectively. 
The contrastive results are illustrated in the Table 7-9. 

From Table 7, we can find that the SP values of improvement perform better than original 
on the test functions CTP2, CTP6 and CTP7. And the distribution on CTP7 has been well 
increased. In Table 8, the number of discrete points gained by both original and improvement 
is almost the same, which demonstrates no significant interaction of exponential variation on 
CTP3, CTP4 and CTP5. Table 9 shows that all the mean GD values obtained by improvement 
get better, except on CTP7. Also the results indicate that the exponential variation as a local 
search strategy can strength the exploitation ability, which ensures the better convergence. 
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Table 7. The comparison of SP between original and improvement 

Problems 
 Original  Improvement 
 Mean St.de  Mean St.de 

CTP2 1.8E-03 4.5E-08 1.6E-03 3.1E-08 
CTP6 9.3E-03 6.4E-07 8.1E-03 1.2E-06 
CTP7 4.3E-02 3.4-E-08 2.5E-02 1.9E-08 

 
Table 8. The number of discrete points between original and improvement 

Problems 
 Original  Improvement 
 Mean St.de  Mean St.de 

CTP3 14 0 14 0 
CTP4 14 0 13.97 0.0333 
CTP5 15 0 15 0 

 
Table 9. The comparison of GD between original and improvement 

Problems 
 Original  Improvement 
 Mean St.de  Mean St.de 

CTP2 1.7E-04 1.3E-10 1.5E-04 6.2E-11 
CTP3 1.4E-03 9.2E-08 1.3E-03 2.7E-07 
CTP4 2.6E-03 2.4E-06 2.3E-03 4.2E-07 
CTP5 5.4E-04 2.3E-09 4.4E-04 4.4E-09 
CTP6 6.3E-04 2.5E-09 6.1E-04 1.6E-09 
CTP7 2.1E-04 2.4E-10 2.3E-04 1.0E-10 

5. Conclusion and future work 
In this paper, we have suggested a constrained multi-objective optimization algorithm, 

called ε-T-CMOA. From the perspective of the complementary advantages of dual population 
storage and ε-constraint, a novel constraint handling technique, ε-truncation, is presented to 
coordinate diversity and convergence by adaptively exploiting feasible Pareto solutions and 
infeasible solutions with both the lower constraint violation and the better objective value. 
Besides, the improved crowding density can evaluate the distribution accurately, and cut down 
the computation load via selecting a part of Pareto solutions and near solutions to participate in 
the calculation. Moreover, for achieving a better compromise between global exploration and 
local exploitation, exponential variation is introduced following crossover operation and 
mutation operation.  

To validate the competitiveness, we have conducted a comprehensive experimental 
comparison with eight state-of-the-art algorithms that subject to different kinds of 
technologies. Many benchmark test problems (CTP2-CTP7 series and CF1-CF5 series) are 
selected to challenge different capabilities of the algorithms. In CTP-series test problems, the 
proposed ε-T-CMOA has been able to successfully find a well-converged and well-diversified 
set of solutions over multiple independent runs. However, on some CF-series test problems, 
like LIULI and MTS, ε-T-CMOA encounters with an increasingly difficult task of maintaining 
diversity and converging to the PF. Although different algorithms have exhibited their 
working on different problems, we have observed that none of these algorithms is capable of 
treating all the test problems, which implies that a careful choice of algorithms is still required 
at present when we deal with a complicated CMOP.  
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In the future, it will be attractive to extend ε-T-CMOA to handle constrained 
many-objective problems by incorporating advanced EAs. Moreover, we will apply 
ε-T-CMOA to real-world problems for further confirming its effectiveness. 
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