• 제목/요약/키워드: abelian

검색결과 265건 처리시간 0.029초

QUASI-COMMUTATIVE SEMIGROUPS OF FINITE ORDER RELATED TO HAMILTONIAN GROUPS

  • Sorouhesh, Mohammad Reza;Doostie, Hossein
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.239-246
    • /
    • 2015
  • If for every elements x and y of an associative algebraic structure (S, ${\cdot}$) there exists a positive integer r such that $ab=b^ra$, then S is called quasi-commutative. Evidently, every abelian group or commutative semigroup is quasi-commutative. Also every finite Hamiltonian group that may be considered as a semigroup, is quasi-commutative however, there are quasi-commutative semigroups which are non-group and non commutative. In this paper, we provide three finitely presented non-commutative semigroups which are quasi-commutative. These are the first given concrete examples of finite semigroups of this type.

POLYGONAL PRODUCTS OF RESIDUALLY FINITE GROUPS

  • Wong, Kok-Bin;Wong, Peng-Choon
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.61-71
    • /
    • 2007
  • A group G is called cyclic subgroup separable for the cyclic subgroup H if for each $x\;{\in}\;G{\backslash}H$, there exists a normal subgroup N of finite index in G such that $x\;{\not\in}\;HN$. Clearly a cyclic subgroup separable group is residually finite. In this note we show that certain polygonal products of cyclic subgroup separable groups amalgamating normal subgroups are again cyclic subgroup separable. We then apply our results to polygonal products of polycyclic-by-finite groups and free-by-finite groups.

SOME ARITHMETIC PROPERTIES ON NONSTANDARD NUMBER FIELDS

  • Lee, Junguk
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1345-1356
    • /
    • 2017
  • For a given number field K, we show that the ranks of elliptic curves over K are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of K. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil group as $^*{\mathbb{Z}}$-module, where $^*{\mathbb{Z}}$ is an ultrapower of ${\mathbb{Z}}$, and we show that the nonstandard weak Mordell-Weil property is equivalent to the weak Mordell-Weil property in $^*K$. In a saturated nonstandard number field, there is a nonstandard ring of integers $^*{\mathbb{Z}}$, which is definable. We can consider definable abelian groups as $^*{\mathbb{Z}}$-modules so that the nonstandard weak Mordell-Weil property is well-defined, and we conclude that the nonstandard weak Mordell-Weil property and the weak Mordell-Weil property are equivalent. We have valuations induced from prime numbers in nonstandard rational number fields, and using these valuations, we identify two nonstandard rational numbers.

TOPOLOGICAL CONJUGACY OF DISJOINT FLOWS ON THE CIRCLE

  • Cieplinski, Krzysztof
    • 대한수학회보
    • /
    • 제39권2호
    • /
    • pp.333-346
    • /
    • 2002
  • Let $F={F^v:S^1->S^1,v\in\; V$ and $g={G^v:S^1->S^1,v\in\; V$ be disjoint flows defined on the unit circle $S^1$, that is such flows that each their element either is the identity mapping or has no fixed point ((V, +) is a 2-divisible nontrivial abelian group). The aim of this paper is to give a necessary and sufficient codition for topological conjugacy of disjoint flows i.e., the existence of a homeomorphism $\Gamma:S^1->S^1$ satisfying $$\Gamma\circ\ F^v=G^v\circ\Gamma,\; v\in\; V$$ Moreover, under some further restrictions, we determine all such homeomorphisms.

COHOMOLOGY GROUPS OF CIRCULAR UNITS IN ℤp-EXTENSIONS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • 제8권2호
    • /
    • pp.173-180
    • /
    • 2000
  • Let $k$ be a real abelian field such that the conductor of every nontrivial character belonging to $k$ agrees with the conductor of $k$. Note that real quadratic fields satisfy this condition. For a prime $p$, let $k_{\infty}$ be the $\mathbb{Z}_p$-extension of $k$. The aim of this paper is to produce a set of generators of the Tate cohomology group $\hat{H}^{-1}$ of the circular units of $k_n$, the $nth$ layer of the $\mathbb{Z}_p$-extension of $k$, where $p$ is an odd prime. This result generalizes some earlier works which treated the case when $k$ is real quadratic field and used them to study ${\lambda}$-invariants of $k$.

  • PDF

SEVERAL STABILITY PROBLEMS OF A QUADRATIC FUNCTIONAL EQUATION

  • Cho, In-Goo;Koh, Hee-Jeong
    • 대한수학회논문집
    • /
    • 제26권1호
    • /
    • pp.99-113
    • /
    • 2011
  • In this paper, we investigate the stability using shadowing property in Abelian metric group and the generalized Hyers-Ulam-Rassias stability in Banach spaces of a quadratic functional equation, $f(x_1+x_2+x_3+x_4)+f(-x_1+x_2-x_3+x_4)+f(-x_1+x_2+x_3)+f(-x_2+x_3+x_4)+f(-x_3+x_4+x_1)+f(-x_4+x_1+x_2)=5{\sum\limits_{i=1}^4}f(x_i)$. Also, we study the stability using the alternative fixed point theory of the functional equation in Banach spaces.

2-ENGELIZER SUBGROUP OF A 2-ENGEL TRANSITIVE GROUPS

  • Moghaddam, Mohammad Reza R.;Rostamyari, Mohammad Amin
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.657-665
    • /
    • 2016
  • A general notion of ${\chi}$-transitive groups was introduced by C. Delizia et al. in [6], where ${\chi}$ is a class of groups. In [5], Ciobanu, Fine and Rosenberger studied the relationship among the notions of conjugately separated abelian, commutative transitive and fully residually ${\chi}$-groups. In this article we study the concept of 2-Engel transitive groups and among other results, its relationship with conjugately separated 2-Engel and fully residually ${\chi}$-groups are established. We also introduce the notion of 2-Engelizer of the element x in G and denote the set of all 2-Engelizers in G by $E^2(G)$. Then we construct the possible values of ${\mid}E^2(G){\mid}$.

TANGENTIAL REPRESENTATIONS AT ISOLATED FIXED POINTS OF ODD-DIMENSIONAL G-MANIFOLDS

  • Komiya, Katsuhiro
    • 대한수학회보
    • /
    • 제45권1호
    • /
    • pp.33-37
    • /
    • 2008
  • Let G be a compact abelian Lie group, and M an odd-dimensional closed smooth G-manifold. If the fixed point set $M^G\neq\emptyset$ and dim $M^G=0$, then G has a subgroup H with $G/H{\cong}\mathbb{Z}_2$, the cyclic group of order 2. The tangential representation $\tau_x$(M) of G at $x{\in}M^G$ is also regarded as a representation of H by restricted action. We show that the number of fixed points is even, and that the tangential representations at fixed points are pairwise isomorphic as representations of H.

EXTENSIONS OF DRINFELD MODULES OF RANK 2 BY THE CARLITZ MODULE

  • Woo, Sung-Sik
    • 대한수학회보
    • /
    • 제32권2호
    • /
    • pp.251-257
    • /
    • 1995
  • In the catagory of t-modules the Carlitz module C plays the role of $G_m$ in the category of group schemes. For a finite t-module G which corresponds to a finite group scheme, Taguchi [T] showed that Hom (G, C) is the "right" dual in the category of finite- t-modules which corresponds to the Cartier dual of a finite group scheme. In this paper we show that for Drinfeld modules (i.e., t-modules of dimension 1) of rank 2 there is a natural way of defining its dual by using the extension of drinfeld module by the Carlitz module which is in the same vein as defining the dual of an abelian varietiey by its $G_m$-extensions. Our results suggest that the extensions are the right objects to define the dual of arbitrary t-modules.t-modules.

  • PDF

ON SOME GENERALIZATIONS OF CLOSED SUBMODULES

  • DURGUN, YILMAZ
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1549-1557
    • /
    • 2015
  • Characterizations of closed subgroups in abelian groups have been generalized to modules in essentially dierent ways; they are in general inequivalent. Here we consider the relations between these generalizations over commutative rings, and we characterize the commutative rings over which they coincide. These are exactly the commutative noetherian distributive rings. We also give a characterization of c-injective modules over commutative noetherian distributive rings. For a noetherian distributive ring R, we prove that, (1) direct product of simple R-modules is c-injective; (2) an R-module D is c-injective if and only if it is isomorphic to a direct summand of a direct product of simple R-modules and injective R-modules.