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QUASI-COMMUTATIVE SEMIGROUPS OF FINITE ORDER

RELATED TO HAMILTONIAN GROUPS

Mohammad Reza Sorouhesh and Hossein Doostie

Abstract. If for every elements x and y of an associative algebraic struc-
ture (S, ·) there exists a positive integer r such that ab = bra, then S is
called quasi-commutative. Evidently, every abelian group or commuta-
tive semigroup is quasi-commutative. Also every finite Hamiltonian group
that may be considered as a semigroup, is quasi-commutative however,
there are quasi-commutative semigroups which are non-group and non
commutative. In this paper, we provide three finitely presented non-
commutative semigroups which are quasi-commutative. These are the

first given concrete examples of finite semigroups of this type.

1. Introduction

The quasi-commutativity property in algebraic structures is one of the inter-
esting ideas which has been studied by many authors since 1971. The classifi-
cation or identification of certain major classes of semigroups has been studied
as well. For more and detailed descriptions on the quasi-commutative semi-
groups, quasi-commutative Hamiltonian semigroups, quasi-commutative super
Hamiltonian semigroups and periodic Hamiltonian semigroups one may con-
sult the prolific articles [3, 6, 8, 9, 10, 11]. For our purposes, we need to
recall the notion of presentation 〈X |R〉 of formal generators X and relators
R where, 〈X |R〉 is defined properly for finitely generated semigroups or for
finitely generated monoids. Note that, R is called the set of relations when
〈X |R〉 is a group presentation. Furthermore, some preliminaries and more
information on the semigroups and monoids presentation are required in the
presentation theory of semigroups which may be found in [4, 5, 7]. The natural
question which may be posed here is how the non-group quasi-commutative
semigroups may be constructed? In this paper, we construct three finitely
presented non-commutative semigroups which are not groups and show that
they are finite and quasi-commutative. This construction is based on exam-
ining possible semigroup presentations of the known quasi-commutative finite
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groups. Our notation is fairly standard and we follow the celebrated references
Howie [4] and Clifford [7] for the basic notions. Consider the presentations

π1 = 〈a, b | a5 = a, b2 = a2, ba = ab3〉,

π2 = 〈a, b, c1, c2, . . . , ck | a5 = a, b2 = a2, ba = ab3, c3i = ci, aci = cia,

bci = cib, cicj = cjci, 1 ≤ i, j ≤ k〉,

π3 = 〈a, b, c1, c2, . . . , ck, d | a5 = a, b2 = a2, ba = ab3, c3i = ci, d
p+1 = d,

aci= cia, da= ad, db= bd, dci = cid, bci = cib, cicj = cjci, 1 ≤ i, j ≤ k〉,

where p is an odd prime and let Sg(π) and Gp(π) be the semigroup and the
group presented by π, respectively. For the detailed information on the semi-
group presentation, one may consult Campbell et al. [1, 2]. The semigroup
Sg(π1) is of order 9 and may be considered as the smallest non-group example
of quasi-commutative semigroup. We’ll give a short proof for this, in Section
2 after the investigation of preliminary properties of a non-commutative quasi-
commutativity. However, our main results are the following propositions:

Proposition A. Sg(π2) is a finite quasi-commutative semigroup of order

10× 3k − 1.

Proposition B. Sg(π3) is a finite quasi-commutative semigroup of order

10(3k − 1)p+ 10× 3k + 10p− 1.

2. Preliminary properties

A semigroup S is called quasi-commutative if for every x, y ∈ S there exists
a positive integer r such that xy = yrx. Following Mukherjee [8] we first
recall certain preliminary properties of quasi-commutative semigroups. For
two elements a, b of a semigroup S if ab = bra holds for some positive integers
r then, the following identities hold for every positive integer k:

(A.1)
abk = brka, akb = br

k

ak,

(ab)k = br+r2+···+rk · ak, (ba)k = b1+r+···+rk−1

· ak.

Lemma 2.1. The relator ab = b3a holds in Sg(π1). Moreover, for all values

of positive integers i and k, bkai = aib3
ik

Proof. The relators of Sg(π1) give us:

ab = a5b = (a4)(ab) = b4(ab) = b3(bab) = b3(ab3)b (for ba = ab3)

= b3ab4 = b3aa4 = b3a5 = b3a.

To prove the last part, for a fixed k, we use an induction method on i. Also,
to shorten the proof and avoid excessive exposition, we consider two cases for
i (odd and even) and observe that 3i ≡ ±1 (mod 4) while, i is even or odd,
respectively. �
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Lemma 2.2. For all positive integers k, i and t,

(aibk)t = atibk(1+3i+32i+···+3(t−1)i).

Proof. For t = 1 there is nothing to prove and using the induction method on
t we get:

(aibk)t+1 = (aibk)t(aibk)

=
(

atibk(1+3i+32i+···+3(t−1)i)
)

(aibk) (by the inductive hypothesis)

= ati
(

bk(1+3i+32i+···+3(t−1)i)ai
)

bk.

Now, Lemma 2.1 gives us:

bk(1+3i+32i+···+3(t−1)i)ai = aib3
i
×k(1+3i+32i+···+3(t−1)i).

Consequently,

(aibk)t+1=ati
(

aib3
i
×k(1+3i+32i+···+3(t−1)i)

)

bk=a(t+1)ibk(1+3i+32i+···+3ti).
�

As a result of this lemma, we get the following results which we believe that
they are the key in our purposes of this section.

Lemma 2.3. The equality (aib)3 = aib3 holds in Sg(π1) for every positive

integer i and the equations (aib)3 = (ai+2b) = a3ib hold in Sg(π1) for odd

values of i. Moreover, Sg(π1) is quasi-commutative .

Proof. The first two parts may be deduced by using Lemma 2.2 and by con-
sidering the relators of Sg(π1). Again, using the result of Lemma 2.1 we get:

Sg(π1) = {b} ∪ {ai} ∪ {ajb},

where 1 ≤ i, j ≤ 4. So, Sg(π1) is of order 9. To prove the quasi-commutativity
of Sg(π1), we consider different cases for x, y ∈ Sg(π1). Obviously in the
following cases we have nothing to do:

• x = y.
• x, y ∈ {ai | 1 ≤ i ≤ 4}.
• x = ai, y = ajb, 1 ≤ i, j ≤ 4.
• x = ajb, y = aib, 1 ≤ i, j ≤ 4.

The essential cases for x and y, that may be lead to finding appropriate integers
r, n satisfying xy = yrx and yx = xny are as follows.

Case 1. x = ai and y = b. By using (A.1), we get xy = aib = b3
i

ai = (b)3
i

ai

and so, xy = y3
i

x. For even values of i we may consider Lemma 2.1 to get
yx = bai = aib = xy. And if i be odd, then by Lemma 2.3 we get yx = bai =
ai+2b = a3ib = x3y.

Case 2. x = ajb and y = b. To calculate xy we again consider (A.1) then
for even values of j we get xy = (ajb)b = (baj)b = b(ajb) = yx. For the odd
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values of j, we get:
{

xy = (ajb)b = (b3aj)b = b3(ajb) = y3x (for (ajb)b = (b3
j

aj)b),

yx = b(ajb) = (baj)b =
(

aj+2b
)

b = (ajb)3b = x3y (for baj = aj+2b). �

3. Proof of Proposition A

To identify the elements of Sg(π2) first we consider the following key lemma.

Lemma 3.1. The semigroup Sg(π2) may be partitioned as

Sg(π2) = {b}∪{ai}∪{ajb}∪{
h
∏

t=1

crht }∪{b
s
∏

t=1

crst }∪{al
p
∏

t=1

c
rp
t }∪{amb

q
∏

t=1

c
rq
t }

where, 1 ≤ h, s, p, q ≤ k, 1 ≤ rh, rs, rp, rq ≤ 2, 1 ≤ i, j,m, l ≤ 4.

Proof. In light of Lemma 2.1 and the relators of Sg(π2) we conclude that there

is no word in this semigroup starting with b or
∏h

t=1 c
rh
t except the words b

and
∏h

t=1 c
rh
t where, h = 1, . . . , k, 1 ≤ rh ≤ 2. �

Proof of Proposition A. We proceed in the same way as in Lemma 2.3. In fact,
to find a proper r such that xy = yrx, x, y ∈ Sg(π2) we can consider different
cases for x and y. Obviously, for the cases in which x = y, or

• x = ai, y = aj.

• x =
∏h

t=1 c
rh
t , y =

∏s

t=1 c
rs
t .

• x = b
∏s

t=1 c
rs
t , y = b

∏p

t=1 c
rp
t .

• x = aj
∏q

t=1 c
rq
t , y = al

∏p

t=1 c
rp
t .

the desired r would be 1, i.e., xy = yx and Lemma 2.3 gives us r = 1 or r = 3
in the following cases

• x = ai, y = ajb
∏h

t=1 c
rh
t .

• x = aib, y = aj
∏h

t=1 c
rh
t .

• x = aib, y = ajb
∏h

t=1 c
rh
t .

• x = ai
∏h

t=1 c
rh
t , y = ajb

∏s

t=1 c
rs
t .

• x = aib
∏h

t=1 c
rh
t , y = ajb

∏s

t=1 c
rs
t .

Moreover, regarding the relators of Sg(π2), the pair of words as

• x = aib, y =
∏h

t=1 c
rh
t .

• x =
∏p

t=1 c
rp
t , y ∈ {b

∏s

t=1 c
rs
t } ∪ {al

∏p

t=1 c
rp
t }.

• x = b, y ∈ {
∏h

t=1 c
rh
t } ∪ {b

∏s

t=1 c
rs
t }.

• x = ai, y ∈ {
∏h

t=1 c
rh
t } ∪ {al

∏p

t=1 c
rp
t }.

• x = amb
∏q

t=1 c
rq
t , y =

∏h

t=1 c
rh
t .

are commute. So, for each such pair we get xy = yx. Summarizing all other
possible cases for x and y, there are exactly six cases. To shorten the proof, we
give the proof of quasi-commutativity of the pairs (x, y) and (y, x) just in the
cases 1, 4 and 5. These six cases are:
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• x = ai, y = b
∏h

t=1 c
rh
t .

• x = aib, y = b
∏h

t=1 c
rh
t .

• x = b, y = aj
∏h

t=1 c
rh
t .

• x = b, y = ajb
∏h

t=1 c
rh
t .

• x = ai
∏h

t=1 c
rh
t , y = b

∏s

t=1 c
rs
t .

• x = b
∏h

t=1 c
rh
t , y = ajb

∏s

t=1 c
rs
t .

In the first case by (A.1) and the Lemma 2.1 we get xy =
(

b3
i

ai
)(

∏h

t=1 c
rh
t

)

and yx = (bai)
(

∏h

t=1 c
rh
t

)

. If i is even so according to the relators of Sg(π2)

we get xy = yx and if i is odd then,

xy =

(

b3
h
∏

t=1

crht

)

ai =

(

b

h
∏

t=1

crht

)3

ai = y3x,

yx =
(

ai+2b
)

(

h
∏

t=1

crht

)

= a3i

(

b

h
∏

t=1

crht

)

= x3y.

In the fourth case by (A.1) we have xy=b
(

ajb
∏h

t=1 c
rh
t

)

=(baj)
(

∏h

t=1 c
rh
t b
)

and yx =
(

ajb
∏h

t=1 c
rh
t

)

b = (ajb)
(

b
∏h

t=1 c
rh
t

)

=
(

b3
j

aj
)(

b
∏h

t=1 c
rh
t

)

. Sup-

pose that j is even so xy = (ajb)
(

∏h

t=1 c
rh
t b
)

=
(

ajb
∏h

t=1 c
rh
t

)

b = yx. And if

j is odd so according to Lemmas 2.1, 2.3 and the 4th relator we get

xy =
(

aj+2b
)

(

h
∏

t=1

crht b

)

=

(

a3jb

h
∏

t=1

crht

)

b

=
(

a3jb5
)

(

h
∏

t=1

c3rht b

)

=

(

ajb

h
∏

t=1

crht

)3

b = y3x,

yx = (b3aj)

(

b

h
∏

t=1

c
rh
t

)

=
(

ajb3
1+j
)

(

b

h
∏

t=1

c
rh
t

)

=

(

ajb

h
∏

t=1

c
rh
t

)

b = xy.

In the fifth case regarding to the 5th and 6th relators of the semigroup and
(A.1), we have

xy =
(

ai
∏h

t=1 c
rh
t

)

(b
∏s

t=1 c
rs
t ) = (aib)

(

∏s

t=1 c
rs
t

∏h

t=1 c
rh
t

)

=
(

b3
i ∏s

t=1 c
rs
t

)(

ai
∏h

t=1 c
rh
t

)

,

yx = (b
∏s

t=1 c
rs
t )
(

ai
∏h

t=1 c
rh
t

)

=
(

∏h

t=1 c
rh
t

∏s

t=1 c
rs
t

)

(bai)

=
(

∏h

t=1 c
rh
t

∏s

t=1 c
rs
t

)(

aib3
i
)

=
(

ai
∏h

t=1 c
rh
t

)(

b3
i ∏s

t=1 c
rs
t

)

.
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Now if i is even so xy = (b
∏s

t=1 c
rs
t )
(

ai
∏h

t=1 c
rh
t

)

= yx. And if i is odd so

Lemma 2.2 and the 4th, 5th and 6th relators of Sg(π2) give us

xy =
(

b3
∏s

t=1 c
rs
t

)

(

ai
∏h

t=1 c
rh
t

)

=
(

b3
∏s

t=1 c
3rs
t

)

(

ai
∏h

t=1 c
rh
t

)

= (b
∏s

t=1 c
rs
t )

3
(

ai
∏h

t=1 c
rh
t

)

= y3x,

yx =
(

ai
∏h

t=1 c
rh
t

)

(

b3
∏s

t=1 c
rs
t

)

=
(

ai
∏h

t=1 c
rh
t b2

)

(b
∏s

t=1 c
rs
t )

=
(

ai+2
∏h

t=1 c
rh
t

)

(b
∏s

t=1 c
rs
t ) =

(

a3i
∏h

t=1 c
3rh
t

)

(b
∏s

t=1 c
rs
t )

=
(

ai
∏h

t=1 c
rh
t

)3

(b
∏s

t=1 c
rs
t ) = x3y.

A quick use of Lemma 3.1 gives us the order of Sg(π2) and this completes
the proof. �

4. Proof of Proposition B

Proof of Proposition B. A similar method to that of Proposition A may be
used here to investigating the quasi-commutating of the semigroup Sg(π3).
This will be performed by considering all cases for the pair (x, y) of Sg(π3) by
the relators of this semigroup. We recognize all of these cases and omit the
proof, which is similar to that of the last section. Assuming

1 ≤ i, j ≤ 4, 1 ≤ h ≤ k, 1 ≤ rh, rs ≤ 2, 1 ≤ m,n ≤ p

the possible cases are:

• x = bdm, y ∈

{

aidn, ai
∏h

t=1 c
rh
t dn, aib

∏h

t=1 c
rh
t dn, ai

aib
∏h

t=1 c
rh
t , aibdn, ai

∏h

t=1 c
rh
t

• x = aidm, y ∈

{

aj
∏h

t=1 c
rh
t , b

∏h

t=1 c
rh
t , b, ajb

∏h

t=1 c
rh
t

b
∏h

t=1 c
rh
t dn, bdn, ajb

∏h

t=1 c
rh
t dn, ajbdn

• x = ai
∏h

t=1 c
rh
t dm, y ∈

{

b, b
∏h

t=1 c
rs
t , ajb

∏h

t=1 c
rs
t , bdn, dn

b
∏h

t=1 c
rs
t dn, ajb

∏h

t=1 c
rs
t dn, ajbdn

• x = b
∏h

t=1 c
rh
t dm, y ∈

{

ai, ai
∏h

t=1 c
rs
t , aib

∏h

t=1 c
rs
t , ai

∏h

t=1 c
rs
t dn

aib
∏h

t=1 c
rs
t dn, aibdn, aidn

• x = aib
∏h

t=1 c
rh
t dm, y ∈











b, aj , aj
∏h

t=1 c
rs
t , b

∏h

t=1 c
rs
t , ajb

∏h

t=1 c
rs
t

bdn, ajdn, aj
∏h

t=1 c
rs
t dn, b

∏h

t=1 c
rs
t dn

ajb
∏h

t=1 c
rs
t dn, ajbdn

• x ∈ {b, b
∏h

t=1 c
rh
t }, y ∈

{

ai, ai
∏h

t=1 c
rh
t , aib

∏h

t=1 c
rh
t , aidm

ai
∏h

t=1 c
rh
t dm, aib

∏h

t=1 c
rh
t dm, aibdn
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• x = {ai, ai
∏h

t=1 c
rh
t }, y ∈

{

b, b
∏h

t=1 c
rh
t , ajb

∏h

t=1 c
rh
t , bdm

b
∏h

t=1 c
rh
t dm, ajb

∏h

t=1 c
rh
t dm, ajbdn

• x = aib
∏h

t=1 c
rh
t , y ∈

{

b, aj , aj
∏h

t=1 c
rs
t , b

∏h

t=1 c
rs
t , ajb

∏h

t=1 c
rs
t

bdm, b
∏h

t=1 c
rs
t dm, ajb

∏h

t=1 c
rs
t dm, ajbdn

• x = aibdm, y ∈











b, aj , aj
∏h

t=1 c
rs
t , b

∏h

t=1 c
rs
t , ajb

∏h

t=1 c
rs
t

ajb
∏h

t=1 c
rs
t dn, bdn, aidn, b

∏h

t=1 c
rs
t dm

aj
∏h

t=1 c
rs
t dn, b

∏h

t=1 c
rs
t dn, ajbdn

To complete the proof of Proposition B, one may use the following partition
of,

Sg(π3) = {aibdm} ∪ {b} ∪ {ai} ∪ {aib

h
∏

t=1

c
rh
t } ∪ {b

h
∏

t=1

c
rh
t } ∪ {ai

h
∏

t=1

c
rh
t }

∪ {aib

h
∏

t=1

c
rh
t dm} ∪ {b

h
∏

t=1

c
rh
t dm} ∪ {ai

h
∏

t=1

c
rh
t dm} ∪ {

h
∏

t=1

c
rh
t dm}

∪ {aidm} ∪ {bdm} ∪ {aib} ∪ {

h
∏

t=1

c
rh
t } ∪ {dm}.

So,

|Sg(π3)| = 10(3k − 1)p+ 10× 3k + 10p− 1. �
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