Browse > Article
http://dx.doi.org/10.4134/BKMS.2015.52.5.1549

ON SOME GENERALIZATIONS OF CLOSED SUBMODULES  

DURGUN, YILMAZ (DEPARTMENT OF MATHEMATICS BITLIS EREN UNIVERSITY)
Publication Information
Bulletin of the Korean Mathematical Society / v.52, no.5, 2015 , pp. 1549-1557 More about this Journal
Abstract
Characterizations of closed subgroups in abelian groups have been generalized to modules in essentially dierent ways; they are in general inequivalent. Here we consider the relations between these generalizations over commutative rings, and we characterize the commutative rings over which they coincide. These are exactly the commutative noetherian distributive rings. We also give a characterization of c-injective modules over commutative noetherian distributive rings. For a noetherian distributive ring R, we prove that, (1) direct product of simple R-modules is c-injective; (2) an R-module D is c-injective if and only if it is isomorphic to a direct summand of a direct product of simple R-modules and injective R-modules.
Keywords
(co)neat submodules; closed submodules; c-injective modules; noetherian ring; distributive ring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Buyukasik and Y. Durgun, Coneat submodules and coneat-flat modules, J. Korean Math. Soc. 51 (2014), no. 6, 1305-1319.   DOI   ScienceOn
2 I. Crivei, s-pure submodules, Int. J. Math. Math. Sci. 4 (2005), no. 4, 491-497.
3 S. Crivei, m-injective modules, Mathematica 40(63) (1998), no. 1, 71-78.
4 S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc. 89 (2014), no. 2, 343-352.   DOI
5 N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, Longman Scientific & Technical, Harlow, 1994.
6 E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
7 L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012), no. 2, 131-143.   DOI
8 A. I. Generalov, Weak and ${\omega}$-high purities in the category of modules, Mat. Sb. (N.S.) 105(147) (1978), no. 3, 389-402, 463.
9 K. Honda, Realism in the theory of abelian groups. I, Comment. Math. Univ. St. Paul. 5 (1956), 37-75.
10 T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
11 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, American Mathematical Society, Providence, RI, 2001.
12 C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc. 26 (1970), 561-566.   DOI   ScienceOn
13 E. Mermut, C. Santa-Clara, P. F. Smith, Injectivity relative to closed submodules, J. Algebra 321 (2009), no. 2, 548-557.   DOI   ScienceOn
14 W. K. Nicholson and M. F. Yousif, Quasi-Frobenius rings, Cambridge University Press, Cambridge, 2003.
15 K. Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), no. 3, 310-338.   DOI
16 C. Santa-Clara and P. F. Smith, Direct products of simple modules over Dedekind domains, Arch. Math. 82 (2004), no. 1, 8-12.   DOI
17 G. Renault, Etude de certains anneaux lies aux sous-modules complements d'un A-module, C. R. Acad. Sci. Paris 258 (1964), 4888-4890.
18 L. Salce, Almost perfect domains and their modules, Commutative algebraNoetherian and non-Noetherian perspectives, 363-386, Springer, New York, 2011.
19 C. Santa-Clara and P. F. Smith, Modules which are self-injective relative to closed submodules, Algebra and its applications (Athens, OH, 1999), 487-499, Contemp. Math., 259, Amer. Math. Soc., Providence, RI, 2000.
20 E. G. Sklyarenko, Relative homological algebra in the category of modules, Uspehi Mat. Nauk 33 (1978), no. 3, 85-120.
21 P. F. Smith, Injective modules and prime ideals, Comm. Algebra 9 (1981), no. 9, 989-999.   DOI
22 B. T. Stenstrom, High submodules and purity, Ark. Mat. 7 (1967), 173-176.   DOI
23 A. A. Tuganbaev, Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht, 1998.
24 H. Zoschinger, Gelfandringe und koabgeschlossene Untermoduln, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. (1982), 43-70.
25 H. Zoschinger, Swach-Flache Moduln, Comm. Algebra 41 (2013), no. 12, 4393-4407.   DOI