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POLYGONAL PRODUCTS OF RESIDUALLY FINITE
GROUPS

KoK BIN WONG AND PENG CHOON WONG

ABSTRACT. A group G is called cyclic subgroup separable for the cyclic
subgroup H if for each # € G\H, there exists a normal subgroup N of
finite index in G such that x ¢ HN. Clearly a cyclic subgroup separa-
ble group is residually finite. In this note we show that certain polygo-
nal products of cyclic subgroup separable groups amalgamating normal
subgroups are again cyclic subgroup separable. We then apply our re-
sults to polygonal products of polycyclic-by-finite groups and free-by-
finite groups.

1. Introduction

The polygonal products of groups were introduced by Karrass, Pietrowski
and Solitar [6] in their study of the subgroup structure of the Picard group
PSL(2, Z[i]). By using their results, Brunner, Frame, Lee and Wielenberg
[3] characterized all the torson-free subgroups of finite index in the Picard
group. Polygonal products also form a large subclass in the class of one-relator
products of cyclic groups. For certain groups in the above class, Fine, Howie
and Rosenberger [4] had proved a Freiheitssatz but the word problem and
residual finiteness are still unknown.

Unlike the generalized free products of groups, the residual finiteness of
polygonal products are little known even when the amalgamated subgroups
are cyclic. In addition, polygonal products do not have many residual proper-
ties. In [1] Allenby and Tang showed that the polygonal products of finitely
generated free abelian groups amalgamating cyclic subgroups with trivial in-
tersections are residually finite. But in the same paper, Allenby and Tang also
gave an example of a polygonal product of finitely generated nilpotent groups
of class 2 amalgamating cyclic subgroups which is not residually finite.

In 2], G. Baumslag proved that the generalized free products of two polycy-
clic-by-finite groups amalgamating a central subgroup are residually finite.
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More recently, Kim [7] has shown that the polygonal products of polycyclic-
by-finite groups amalgamating central subgroups are cyclic subgroup separable
(or 7, for short) and hence residually finite. In this note we will prove that the
polygonal products of polycyclic-by-finite groups amalgamating normal sub-
groups are 7. and hence residually finite. More precisely, we shall show that
the polygonal products of subgroup separable groups amalgamating finitely
generated normal subgroups are .. Thus the polygonal products of polycyclic-
by-finite groups and free-by-finite groups amalgamating normal subgroups are
e

The notations used here are standard. In addition the following notations
will be used for any group G:

N <y G means N is a normal subgroup of finite index in G.

|zl means the usual generalized free product length of z.

A} B denotes the generalized free product of A and B amalgamating a
subgroup H.

2. Preliminaries

We begin with the following definition and theorems.

Definition 2.1. A group G is called H-separable for the subgroup H if for
each z € G\H, there exists N <y G such that = ¢ HN.

G is called HK-separable for the subgroups H, K if for each x € G\HK,
there exists N <y G such that « ¢ HKN.

G is termed subgroup separable if G is H-separable for every finitely gener-
ated subgroup H.

G is termed cyclic subgroup separable (or 7. for short) if G is H-separable
for every cyclic subgroup H.

It is well known that polycyclic groups and free groups are subgroup separa-
ble (Mal’'cev [8], M. Hall [5]). Since a finite extension of a subgroup separable
group is again subgroup separable, polycyclic-by-finite groups and free-by-finite
groups are subgroup separable.

The following theorems will be used in the proof of several theorems.

Theorem 2.2. (Baumslag [2]) Let G = A }; B where A and B are finite. Then
G is subgroup separable and hence ..
Theorem 2.3. (Kim [7]) Let G = A [, B. Suppose that

(a) A and B are 7. and H-separable,
(b) for each N <y H, there exist Ny <ty A and Np <y B such that NaNH =
NgnNHCN.

Then G is 7.
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3. Free products amalgamating normal subgroups

In this section we shall show that the generalized free products of finitely
many subgroup separable groups amalgamating normal subgroups with trivial
intersections are m.. We begin with the generalized free products of two groups.

The followings two lemmas (Lemma 3.1, Lemma 3.2) are well known to
researchers in this area. However we provide the proof for expository purposes.

Lemma 3.1. Let H be a finitely generated group and S<y H. Then there exists
fu(8) C S such that fu(S) is a characteristic subgroup of finite index in H.

Proof. We define fr(S) as follow: If S is a characteristic subgroup of H then
fu(S) = S. Suppose S is not a characteristic subgroup of H. Let [H : S] =m
where m is a positive integer. Since H is finitely generated, the number of
subgroups of index m in H is finite. Let N be the intersection of all these
subgroups. Then N is a characteristic subgroup of finite index in H and N C S.
We then define fy(S) = N. a

Lemma 3.2. Let A be a subgroup separable group and H be a finitely generated
normal subgroup of A. If S<y H and S is normal in A, then there exists N1y A
such that NN H =S.

Proof. Since H is finitely generated and S<y H, then S is also finitely generated.
Since A is subgroup separable, then A = A/S is residually finite. Now H=
H/S is finite. Therefore there exists N <y A such that NN H = {1}. Let N be
the preimage of N. Then NN H = . O

Lemma 3.3. Let A be a subgroup separable group and H be a finitely generated
normal subgroup of A. Then for each S<y H, there exists fu(S) C S such that
fu(S) is a characteristic subgroup of finite index in H and there exists N <y A
such that NN H = fg(S).

Proof. Follows from Lemmas 3.1 and 3.2. O

Theorem 3.4. Let G = A}, B where A and B are subgroup separable and H
s a finitely generated normal subgroup of A and B. Then G is 7.

Proof. We shall use Theorem 2.3. Since A, B are w. and H-separable, it is
sufficient to show that given any Ny <y H, there exist Ng <y A and Np <y B
such that NoNH = NgNH C Ng. Now given any Ny<yH, then by Lemma, 3.3,
there exists a characteristic subgroup fuy(Ng) of H such that fg(Ny) C Ny
and there exist N4 <y A and Np <y B such that NyNH = fyg(Ny) = NpNH.
The result follows from Theorem 2.3. O

Next we extend Theorem 3.4 to generalized free products of more than two
groups.

Lemma 3.5. Let A be a subgroup separable group and Hy, Hs be finitely gener-
ated normal subgroups of A and HiNHy = {1}. If S1ay H1, So<p Hy and 51,52
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are normal in A, then there exists N <y A such that NNH; = S, NNH; = S,
andNHlﬂNHg =N.

Proof. Since Hq, Hs are finitely generated and S <y Hy, S2 <y Ha, then S; and
S, are also finitely generated. Therefore S1.5; is finitely generated and hence
A = A/S18; is residually finite. Since HyH, = H1H,/S;5> is finite, there
exists N <y A such that N N H,H, = {1}. Let N be the preimage of N. Then
NﬂHl:Sl,NﬂHQZSQandNHlﬁNHQZN. O

Lemma 3.6. Let A be a subgroup separable group and H, Hz be finitely gen-
erated normal subgroups of A and Hy N Hy = {1}. Then for each i and each
Si<y H;, there exists fu,(S;) C S, such that fy,(S;) is a characteristic subgroup
of finite index in H;. Furthermore A has the property

(a) for each Sy <y Hi, Sz <y Hs, there exists N <y A such that NN Hy =
le(S1),NﬁH2 = sz(Sg) and NHINNHy = N.

Proof. Follows from Lemma 3.1 and 3.5. O

Lemma 3.7. Let G=A ;‘IB and M, K be subgroups of A, B respectively with
MnH={1}=KNH. Let X = H /M or K. Suppose for each Sx <y X
there exists fx(Sx) C X such that fx(Sx) is a characteristic subgroup of X.
Fuyrther suppose that A and B have the following properties:

(a) for each Sy <y H, Spr <y M, there exists Na <y A such that NeNH =
fua(Su), NaNM = fp(Sy) and N\MNNaH = Na,

(b) for each Sy <y H, Sk <5 K, there exists Ng <4y B such that Ng N H =
fH(SH), NpnNnK= fK(SK) and NgK N NgH = Np.

Then for each Sy <y M and Sk <5 K, there exists N <5 G such that NNM =
Fm(Sup), NNK = fg(Sk) and NMNNK = N.

Proof. Let Sy <y M, Sk <5 K be given. Next we let Sy = H. By assumption,
there exist NA<lfA, NB<1fB such that NozNH = fH(SH), NiNM = fM(SM),
NAMNNpH = Ny and NgNH = fH(SH), NpnK = fK(SK), NgKNNgH =
Ngp. Let G = A/N4+B/Np where H = HNo/N4 = HNp/Np. Since G is
residually finite by Theorem 2.2 and MK is a finite set, there exists N < f G
such that NN MK = {1}. Let N be the preimage of N. Then NN M =
fu(Sm)y NN K = fx(Sk) and NMNNK = N. O

Lemma 3.8. Let {A;},i=1,2,...,n, be groups and H;_1, H; be subgroups of
A; with Hi_1 N H; = {1}. Suppose for each i and each S; <5 H;, there exists
fu,(S;) © S; such that fg,(S;) is a characteristic subgroup of H;. Further

suppose that each A; has the property
(a) for each S;_q1 <y H;_1,S; <y H;, there exists Na, <5 A; such that Na, N
H, = fH,-_l(Sz'——l),NAimHi = fu, (Si) and Na,H; 1NN4,H; = Na,.

Let E, = A; 1;1 A, 1;2 .. H:_l A,. Then E,, has the property
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(a’) for each So <ty Hy, Sn <y Hy, there exists N <y Ey, such that NN Ho =
fu,(So)s NN Hy, = fu, (Sn) and NHoNNH, = N

Proof. ' We prove by induction on n. The case n = 2 follows from Lemma 3 7.
Jetn>3 Then E, = FE,_; H:ﬂAn where E,,_1 = A 1;1 Ay ;2 H:,Q An_1.
By the induction hypothesis, for each Sy <y Ho, Sp—1 <y Hy,—1, there exists
Ng, g E,—1 such that Ng, ,NHy = fHO(So), Ng, NHp_1 = fH, 4 (Sn—l)
and Ngp, _,HoNNg, ,H, 1 = Ng,_,. By (a), for each Sn_1<¢ Hn_1, Sn <5 Hy,
there exists N4, <y A, such that Ng, N H,_1 = fa,_,(Sn-1),Na, N Hy, =
fr,(Sn) and Ng H, 1N N4, H, = N4, . The result now follows from Lemma
3.7. O

Lemma 3.9. (Kim [7]) Let G = A}, B where A, B are H-separable. Suppose
for each Ny <y H, there exist Na<y A, Np<y B such that NeNH = NpNH C
Ny. Let S be any subgroup of B. If B is S-separable, then G is S-separable.

Lemma 3.10. Let {A;}, i = 1,2,...,n, be groups and H;_y, H; be subgroups
of A; with H;_y 0 H; = {1}. Suppose each A; and H; satisfy the hypothesis of
Lemma 3.8. Further suppose each A; is H;_1-separable and H;-separable. Let
E, = A; 1;1 H:,l A,,. Then E,, is Hy-separable and H,-separable.

Proof. We prove by induction on n. The case n = 2 follows from Lemma 3.9.
Let n > 3. Then E,, = E,,_¢ H:_lA” as in Lemma 3.8. By induction E,,_q is
Hy-separable and H,,_-separable. By assumption, A, is H,.1-separable and
H,-separable. By Lemma 3.8, for each So <y Hy, Sp—1 <y Hn_1, there exists
Ng, <44 En_ysuch that Ng,_ , NHp = fHO(SO), Ng,_, NHu 1= fu,_, (Sn_l)
and Ng,_, Ho "Ng,_,H,_1 = Ng,_,. By assumption, for each Sy_1 < Hn—1,
there exists N4, <y A, such that Na, N H,—1 = fu,_,(Sn—1). Hence by
Lemma 3.9, E,, is Hg-separable and H,-separable.

Theorem 3.11. Let {A;}, i = 1,2,...,n, be subgroup separable groups and
H;_1, H; be finitely generated normal subgroups of A; with H;_y N H; = {1}.
Let E, = Ay 51 H:AA"' Then E,, is 7.

Proof. We use induction on n. The case n = 2 follows from Theorem 3.4.
Supposen > 3. Then E,, = E,_1 4" A, asin Lemma 3.8. By induction, £,
is m.. By assumption, A, is subgroup separable and hence .. By Lemma 3.10,
E,_ is Hy-separable and H,_i-separable. Since A, is subgroup separable,
then A, is H,_i-separable. By Lemma 3.8, for each Sy <y Ho, Sn—1 <f Hn1,
there exists Ng,_, <f F—1 such that Ng,_, N Ho = fu,(50), Ng,_, N Hp—1 =
fH,_,(Sn_1) and Ng, HoNNg, ,H,—1 = Ng,_,. By Lemma 3.3, for each
Sn—1<f Hp—1, there exists N4, <y A, such that Ny, N H, 1 = fH,_,(Sn-1).
Hence by Theorem 2.3, E,, is 7. O
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4. Polygonal products amalgamating normal subgroups

In this section we extend Theorem 3.11 to polygonal products of finitely
many subgroup separable groups amalgamating normal subgroups with triv-
ial intersections. As a consequence polygonal products of polycyclic-by-finite
groups and free-by-finite groups are m.. A polygonal product can be described
as follows: (Kim [7]) Let P be a polygon. To each vertex v of P assign a ver-
tex group G, and to each edge e of P assign an edge group G, together with
monomorphisms o, and f. embedding G, into the two vertex groups at the
end of e. The polygonal product G is defined to be the group generated by all
the generators of the vertex groups with defining relations given by the defin-
ing relations of all the vertex groups together with the relations gece = gefBe
for each g. of G.. By abuse of language, we say that G is the polygonal
product of the (vertex) groups Go, G1, ..., G, amalgamating the (edge) groups
Hy, Hy,. .., H, with trivial intersections if G; N Gi;; = H; and H;_1NH; =1
where 0 <i<nand H; = H,4;.

Lemma 4.1. Let G = A5 B and M, K be subgroups of A, B respectively with
MNH = {1} = KNH. Suppose for each Ny <z H there exist Ny<sA,Np«s B
such that N\NH = NgNH C Ny and N\HNNsM = Nj, NgHNNgK = Ng.
If A is H M, MH-separable and B is H,K, HK -separable then G is MK -
separable.

Proof. Let g G — MK.

Case 1. g€ B—K, g ¢ H. Since B is H, K-separable, there exists Mp<«s B
such that g ¢ MpK, g ¢ MpH. Let Ny = Mpn H. By assumption there exist
NAQfA,NBQfB such that NeNH = NgNH C Ny and NAHNNsM = Ng4.
Now let R4 = Nao,Rp = Np N Mg. Then RoNH=RgNH. Let G =
A/RsB/Rp where H = HR4/Ry = HRp/Rp. Clearly G is a homorphic
image of G and HN'M = 1. Then g ¢ MK. Since G is residually finite by
Theorem 2.2 and MK is finite, there exists N <y G such that g ¢ NMK. Let
N be the preimage of N. Then g ¢ NMK.

Case 2. g€ A— M, g ¢ H. The proof for this case is similar to the proof
of Case 1.

Case 3. g € H. Since g ¢ MK, we have g ¢ M, g ¢ K. Since A
is M-separable, B is K-separable, there exist M4 <y A, Mp <y B such that
g ¢ MaM, g ¢ MpK. Let Ny = Ma N Mp. By assumption, there exists
NAQfA,NBQfB such that NeNH = NgNH C Ny and NAHNNgM = Ng4.
Now let R4 = NANM,4 and Rg = Ng N Mg. Then RiNH=RgnNH. Let
G = A/RAF*I‘B/RB where H = HRA/RA = HRB/RB. Then HNM = 1.
Clearly MK is finite and g ¢ MK. We can now proceed as in Case 1.

Case 4. g¢ AUB.

Subcase 1. ||g|| > 3 or ||g|| = 2 and g = b1a;. We will only consider the
case g = biarboay - - - bray wherea, € A~ H, b;e B—H,i=1,2,...,k. The
other cases are similar. Since A is H-separable, B is H-separable, there exist
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Ma <y A, Mg <y B such that a; ¢ MaH, b ¢ MgH, i =1,2,...,k. Let
Ng = M4 N Mp. By assumption, there exist N4 <y A, Np <y B such that
NsNH=NgnHCNg. Nowlet R4 = NyNMy,Rg = Ng N Mg. Then
RisNH =RgNH. Let G = A/Rs%B/Rp where H = HR4/R4 = HRp/Rp.
Clearly ||g]| = ||g]| and hence § ¢ MK. Furthermore MK is finite. We can
now proceed as in Case 1.

Subcase 2. ||g|| = 2 and g = ab where a € A— H, b € B— H. Now
ggéMKifandonlylfa¢MHora—mhandhb¢KwheremEM
h € H. Suppose a ¢ MH. Since A is M H-separable, B is H-separable,
there exist M4 <y A, Mp <y B such that a ¢ MsMH and b ¢ MpH. Let
Ny = M4 N Mp. By assumption, there exist N4 <y A, Np <y B such that
NsNH=NgNHC Ny. Let R4 = NaNMus,Bg = NgN Mg. Then
RsNH = RgNH. Let G = A/RA%B/RB where H = HRA/RA = HRB/RB.
Now @ ¢ MH implies § ¢ MK. Furthermore MK is finite. We can now
proceed as in Case 1.

Suppose a = mh and hb ¢ K. Since A is H-separable, B is H, K-separable,
there exist M4 < A, Mp <f B such that a ¢ MaH,b¢ MgH and hb ¢ MpK.
Let Ng = M4 N Mp. By assumption, there exist Na <5 A, Np <5 B such
that NsNH = NgNH C Ny and Ny\HNNsM = N4, NgHN NgK =
Np. Let R4 = NaNMy, Rg = NgNMp. Then Ra"NH = RgN H and
R4AHNRsM = R4y,RgH N RgK = Rp. Let G = A/RAHB/RB where
H = HRA/RA = HRB/RB Now g ¢ MK, for otherwise, @ = mjh; and
h1b € K where 7 € M, hi € H. Since MNH = {1} and @ = mmh, we have
mi =, h1 = h. But this implies that hb e K a contradiction. Furthermore

MK is finite. We can now proceed as in Case 1. This completes the proof of
the lemma. O

Lemma 4.2. Let G = A[;B and M, K be subgroups of A, B respectively with
MnH={1} =KnNH. Suppose A, B, M, K satisfy the hypothesis of Lemma
4.1. Then G is M * K -separable.

Proof. Let g€ G — (M x K).

Case 1. g € H. Since A is M-separable, B is K-separable, there exist
Myar A, Mp <y B such that g ¢ MaM,g¢ MgK. Let Ny = MaNMp. By
assumption, there exist N4 <y A, Ng <y B such that NseNH = NgNH C Ny
and N\ HNNs4M = Ny and NgHNNgK = Ng. Let R4 = NasN M, and
Rp = NpNMpg. Then RyNH =RpNH. Clearly g ¢ R4M and g ¢ RpK.
Let G = A/RAHB/RB where H = HR4/R4 = HRp/Rp. Then HNM =1
and HNK = 1. Hence § ¢ M % K. Since G is subgroup separable by Theorem
2.2 and M *K is finitely generated, there exists N <; G such that § ¢ N(M*K).
Let N be the preimage of N. Then g ¢ N(M * K).

Case 2. |g|| > 1. We will only consider the case g = a1biaghs - - anby
where a; € A—H, b, ¢ B— H,i=1,2,...,n. The other cases are similar.
Now g ¢ M« K if and only if there exist m;, k;, h; and h} where m; € M, k; ¢ K
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and h;, b, € H such that one of the following is true:
(1)a, ¢ MH
or (1') a1 = mihy but hibs ¢ KH
or (2 ) a1 =mahi, hibi = k1h] but hla: ¢ MH
or (2') a1 = mih1, hib1 = kih}, hlaa = mahsa but hobs ¢ KH

or (’I’L ) a; — m1h1 h1b1 = klhll, . -,hn—lbn—l = k'n—-lh;l—l but h;_lan ¢ MH
or ( ) a) = mlhl,hlbl = klhl, . .,hn_lbn_l = kn_lh;_l,h;_lan = mnhn
but hnbn ¢ K

Let s be the smallest integer such that (s) (or (s)) is true. Now the
mgj, kj, hj, k} are uniquely determined because M NH = {1} = KN H. Since A
is H, M H-separable, B is H-separable, there exist M4 <y A, Mp<y B such that
a; ¢ MoaH, b; ¢ MpH and h),_,a, ¢ MAMH. Let Ny = M4 N Mg. By as-
sumption, there exist N4 <y A, Ng <y B such that NoNH = NgNH C Ny and
NAgHNNAM = Ny, NgHNNgK = Np. Let R4 = NanMy,Rg = NgNMp.
Then RaNH =RpNHand RaAHNRAM = Ro,REHN RgK = Rp. Let
G = A/RA;IB/RB where H = HRA/RA = HRB/RB Clearly Hg” ||§H
Suppose g € M * K. Then there exist #; € M,%; € K and 7;, 7, € H such that
@ = 001,010 = T, ., Vs 185 = Lsls, ..., Up_10n = tnln and Tnbn = un
Since M N H = {1} = K N H, we have ; = s, U = hi T = ks, T, = hi
for i = 1,2,...,s — 1. But then E’s_las € MH a contradiction. Therefore
g ¢ M x K. Furthermore G is subgroup separable by Theorem 2.2 and M * K
is finitely generated. We can now proceed as in Case 1. This completes the
proof of the lemma. \ O

Lemma 4.3. Let {A;}, i = 1,2,...,n, be groups and H; 1, H; be subgroups
of A; with H;_y N H; = {1}. Suppose each A; and H; satisfy the hypothesis of
Lemma 3.8. Further suppose each A; is H;_1-separable, H;-separable, H;_1 H;-
separable and H;H; 1-separable. Let E, = A 51 H:_lA"' Then E, is
HyH,,-separable and Hy x H,, -separable.

Proof. We prove by induction on n. The case n = 2 follows from Lemmas
4.1 and 4.2. Let n > 3. Then E, an*ﬁA as in Lemma 3.8. By
Lemma 3.10, E,,_ is Hy-separable and H,,_i-separable. By induction E,_

is HoHp_1-separable. By assumption, A, is H,_i-separable, H, —separable
and H,_1H,-separable. By Lemma 3.8, for each Sy <y Hy, Sn—1 <y Hp—1,
there exists Ng,_, <y E,,_1 such that Ng,_, N Hy = f5,(S0), Ng,,_, NHyp—1 =
ft,_,(Sn-1) and Ng, Ho N Ng, ,H, 1 = Ng,_,. By assumption, for each
Sn—1 < Hn_1,8, <y Hp, there exists Ny, 4y Ay such that Ny, N Hp_q =
an_l(Sn—l),NAn NH, = fHﬂ(Sn) and Ny, H,_1 NNy H, = Na,. Hence
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by Lemma 4.1, E, is HyoH,-separable and by Lemma 4.2, E, is Hy * H,-
separable. O

Lemma 4.4. Let G = A} B and M, K be subgroups of A, B respectively with
MNH ={1}=KnNH ond H M, K be finitely generated. Suppose further that
A and B satisfy the hypothesis of Lemma 3.7. Then for each S <y (M * K),
there ezists N <y G such that NN (M * K) = fpr.x(S).

Proof. Let S <y (M * K) be given. Since M x K is finitely generated, then
by Lemma 3.1, there exists a subgroup far.x(S) € S such that far.x(S) is
characteristic and of finite index in M = K. Let Sy = far«x(S) N M and
Sk = fum«x(S) N K. Then Sy and Sk are characteristic subgroups of M
and K respectively. Next we let Sy = H. Since H is finitely generated, then
by Lemma 3.1, we have fg(Syg) = Sy = H. By assumption, there exists
Na <y A such that Na MM = f;(Sy) = Sy, NanNH = fu(Sg) = H and
NaM N NsH = Ny. Similarly there exists Np <y B such that Ng N K =
fK(SK) = Sk, NgNH = fH(SH) = H and NgH N NgK = Np. Since
NanH =H = NgnH, we can form G = A/N4 x B/Np. Clearly G is a
homomorphic image of G. Let v : G — G be the natural map from G to G.

We first show that Ker ¢y N (M * K) C far«x(S5). Let g be any element
with the smallest length | g|| such that g € Ker v N (M x K) but g ¢ far«x(S).
Without loss of generality let ¢ = miky---mpk, where m; € M,k; € K.
Then § = miky - mnks, = 1. Hence m; = 1 or k; = 1 for some 7. With-
out loss of generality let m; = 1. Then m; € Na since M = MN4/Na.
Hence m; € NanNM = Sy C fari(S). Now g = maky ---mik;-- - mpk, =
(maky - miakio)mi(maks - mi_1ki—1) " Hmaks o misikion)ki - mnkn.
But (miky---mi_1ki—1)mi(maks -+ mi—1kio1)™t € farsx(S). This implies
that g1 = (mlkl . --mi_lki_l)ki ks ¢ fM*K(S) But g1 = 7 = 1 since
m; = 1. Therefore g7 € Ker v N (M x K). But {jg1)| < |lg||, which is a
contradiction. Thus Ker ¢ N (M * K) C farex(5).

Next we show frr.x(S)NM =1 and fur.x(S)NK = 1. Let ¥ € farx(S)N
M. Then 7 = 5 = m where s € far.x(S) and m € M. Hence m-1 = 1
which implies that sm™ € Ker vy N (M * K) C far.x(S). Therefore m €
frsx(S)N' M C N4, This implies that m = 1 and hence § = 1. Hence
frasx (S)N'M = 1. Similarly far.x(S)NK = 1.

Now G = A/NoxB/Np = A/Ns+(M+K)%B/Np. Since fM*K(S)ﬂM =
1, then M = Mfarx(S)/Farnic(S) = M/frrex(S) N M =~ M. Similarly
fM*K(S)mK _1implieSthat—R TCfM*K( )/fM*K( ) K/fM*K( )QK’V
K. Thus we can form G = A/NAM(M*K>/fM*K( )% B/Ng. Clearly G is a

homomorphic image of G and hence G is a homomorphic image of G.

Since (M * K) /m is finite and G is residually finite by Theorem 2.2,
then there exists N<1f G such that N N (3 * K)/Farex (9)) = {1}. Let N be
the preimage of N. Clearly far«x(S) € NN (M % K). Let go € NN (M x K).
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Since gz = 1, we have g3 € fu«x(S). Let g3 =  where t € far.x(S). Hence
g_gf—l = 1 which implies that got=! € Ker v N (M * K) C fam«x(S). Thus
92 € fu«k(S) and NN (M« K) = far.x(S). O

Lemma 4.5. Let {A;}, i = 1,2,...,n, be groups and H;_1, H; be finitely
generated subgroups of A; with H;_1NH; = {1}. Suppose each A; and H; satisfy
the hypothesis of Lemma 4.3. Let En = Ay g -+ H:_lA"' Then for each
S<f (Ho* Hy,), there exists Ng, <5 E,, such that Ng, N(Ho*Hyp) = fHom, (S).

Proof. We prove by induction on n. The case n = 2 follows from Lemma 4.4.
Let n > 3. Then E, = En_1," A, as in Lemma 3.8. Let S <y (Ho * Hy)
be given. Since Hy * H,, is finitely generated, then by Lemma 3.1, there exists
a subgroup fu,«a, (S) C S such that frg.m, (S) is characteristic in Ho * Hy,.
Let So = fru,«n,(S) N Hyp and S, = fryx, (S) N H,. Then Sy and S, are
characteristic subgroups of Hy and H,, respectively. Next we let S,_1 = Hp_1.
By Lemma 3.8, there exists Ng,_, <5 E,,—1 such that Ng,_, N Ho = fr,(S0),
Ng, . NH,; = an_l(Sn—l) and Ng, ,Hyn Ng, ,H,-1 = Ng,_,. By
assumption, there exists Na, <y Ay such that Na, N H, = fu,(Sn), Na, N
H, 1= fu, ,(Sp—1)and Ny _H,_1NN4 H, = N4, Henceby Lemma 4.4,
there exists Ng, <y F,, such that Ng, N(Ho*Hy) = fHg«n, (S). This completes
the proof. O

Theorem 4.6. Let {A;}, i = 0,1,...,n, be subgroup separable groups and
H;_1, H; be finitely generated normal subgroups of A; with H;_; N H; = {1}
and H_y = H,. Let G be the polygonal product of A1, Ae, ..., A, amalgamating
the subgroups Hy, Hi,...,H,. Then G is w,.

Proof. Let E = A, 1;1 Ay ;2 H:_z A,_1 and F = Ay ;n A,. By Theorem
3.11, E and F are 7,. By Lemma 4.3, E and F are Hp x H,-separable. By
Lemma 4.5, for any S <y (Hy * H,,), there exist Np <y F, Ng <y E such that
NrN(Hyx H,) = NgN(Hy* H,) CS. The result now follows from Theorem
2.3. O

Since polycyclic-by-finite groups and free-by-finite groups are subgroup sep-
arable, from Theorem 4.6, we have the following two corollaries.

Corollary 4.7. Let G be a polygonal product of polycyclic-by-finite or free-
by-finite groups amalgamating finitely generated normal subgroups with trivial
intersections. Then G is m,..

Corollary 4.8. (Kim [7]) Let G be a polygonal product of finitely generated
abelian groups amalgamating subgroups with trivial intersections. Then G is
Te.
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