• Title/Summary/Keyword: a-Plane GaN

Search Result 111, Processing Time 0.043 seconds

Characterization of Ga-doped ZnO thin films prepared by RF magnetron sputtering method (RF 마그네트론 스퍼터링법으로 합성된 Ga-doped ZnO 박막의 특성평가)

  • Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.73-77
    • /
    • 2021
  • Ga-doped ZnO thin films by RF magnetron sputtering process were synthesized according to the deposition conditions of O2 and Ar atmosphere gases, and rapid heat treatment (RTA) was performed at 600℃ in an N2 atmosphere. The thickness of the deposited ZnO : Ga thin film was measured, the crystal phase was investigated by XRD pattern analysis, and the microstructure of the thin film was observed by FE-SEM and AFM images. The intensity of the (002) plane of the X-ray diffraction pattern showed a significant difference depending on the deposition conditions of the thin films formed by O2 and Ar atmosphere gas types. In the case of a single thin f ilm doped with Ga under O2 conditions, a strong diffraction peak was observed. Under O2 and Ar conditions, in the case of a multilayer thin film with Ga doping, only a peak on the (002) plane with a somewhat weak intensity was shown. In the FE-SEM image, it was observed that the grain size of the surface of the thin film slightly increased as the thickness increased. In the case of a multilayer thin film with Ga doping under O2 and Ar atmosphere conditions, the specific resistance was 6.4 × 10-4 Ω·cm. In the case of a single thin film with Ga doping under O2 atmosphere conditions, the resistance of the thin film decreased. The resistance decreased as the thickness of the Ga-doped ZnO thin film increased to 2 ㎛, showing relatively a low specific resistance of 1.0 × 10-3 Ω·cm.

Fabrication of [320×256]-FPA Infrared Thermographic Module Based on [InAs/GaSb] Strained-Layer Superlattice ([InAs/GaSb] 응력 초격자에 기초한 [320×256]-FPA 적외선 열영상 모듈 제작)

  • Lee, S.J.;Noh, S.K.;Bae, S.H.;Jung, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • An infrared thermographic imaging module of [$320{\times}256$] focal-plane array (FPA) based on [InAs/GaSb] strained-layer superlattice (SLS) was fabricated, and its images were demonstrated. The p-i-n device consisted of an active layer (i) of 300-period [13/7]-ML [InAs/GaSb]-SLS and a pair of p/n-electrodes of (60/115)-period [InAs:(Be/Si)/GaSb]-SLS. FTIR photoresponse spectra taken from a test device revealed that the peak wavelength (${\lambda}_p$) and the cutoff wavelength (${\lambda}_{co}$) were approximately $3.1/2.7{\mu}m$ and $3.8{\mu}m$, respectively, and it was confirmed that the device was operated up to a temperature of 180 K. The $30/24-{\mu}m$ design rule was applied to single pixel pitch/mesa, and a standard photolithography was introduced for [$320{\times}256$]-FPA fabrication. An FPA-ROIC thermographic module was accomplished by using a $18/10-{\mu}m$ In-bump/UBM process and a flip-chip bonding technique, and the thermographic image was demonstrated by utilizing a mid-infrared camera and an image processor.

Ferromagnetic resonance of Hensler $Ni_2$MnGa thin films

  • M. D. Huang;Lee, N. N.;Lee, Y. P.;J. Y. Rhee;J. Dubowik
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.116-119
    • /
    • 2003
  • $Ni_2$MnGa films, deposited on mica and glass substrates, were studied by ferromagnetic resonance (FMR) technology. The temperature-dependent resonance field was measured and a martensitic phase transformation (MT) was found between 310 and 340 K, exhibiting an abnormality on the curve. The easy axis is found to be in the film plane. The line width increases as a whole with decreasing temperature, which is discussed in terms of the motional narrowing mechanism. The resonance field was also measured as a function of orientation and the results were fitted, exhibiting a good consistence.

Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry (양자우물구조에 의한 태양전지 단락전류 증가 효과와 이차이온 질량분석법에 의한 원소 정량 분석)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.499-503
    • /
    • 2019
  • Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with $6^{\circ}$ off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for $1{\times}1mm^2$ area was $9.61mA/cm^2$ for the solar cell with QW structure while $7.06mA/cm^2$ for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of $J_{sc}$ and EQE was caused by the suppression of recombination by QW structure.

SAW Propagation Properties of GaN/Sapphire Structure (GaN/사파이어 구조에서의 표면탄성파 전단특성)

  • Choi, Kook-Hyun;Kim, Jin-Yong;Kim, Hyeong-Joon;Chung, Su-Jin;Lee, Tae-Kun;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.522-527
    • /
    • 2002
  • To investigate the SAW properties of GaN films on c-plane sapphire substrates, we carried out both the experimental measuring and theoretical calculation. The experimental characterization of SAW propagation properties was performed with a linear array of interdigital transducer (IDT) structures, while SAW velocities were calculated by matrix methods. HVPSAW mode with the propagation velocity over 10,000m/s and PSAW mode as well as GSAW could be observed in experimental determination. These results were verified by matching with the theoretical calculation.

The Growth Mechanism of Ga$_2$O$_3$ Nanobelt (Ga$_2$O$_3$ 나노벨트의 성장기구)

  • Lee, Jong-Su;Park, Gwang-Su;Seong, Man-Yeong;Kim, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.408-412
    • /
    • 2002
  • Ga$_2$O$_3$ nanobelts were synthesized from mechanically ground GaN powders with a thermal annealing in a nitrogen atmosphere. The nanobelts are with the range of about 10~200nm width and 10~50nm thickness. The nanobelt, growing along the direction perpendicular to the (010) plane and enclosed by (101) and (101) facets, shows no defect and no dislocation.

Optical and Electrical Characteristics of GaN-based Blue LEDs after Low-current Stress (GaN계 청색 발광 다이오드에서 저전류 스트레스 후의 광 및 전기적 특성 변화)

  • Kim, Seohee;Yun, Joosun;Shin, Dong-Soo;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • We analyzed the changes in electrical and optical characteristics of 1 $mm^2$ multiple-quantum-well (MQW) blue LEDs grown on a c-plane sapphire substrate after a stress test. Experiments were performed by injecting 50 mA current for 200 hours to TO-CAN packaged sample chips. We selected the value of injection current for stress through the junction-temperature measurement by using the forward-voltage characteristics of a diode to maintain a sufficiently low junction temperature during the test. The junction temperature at the selected injection current of 50 mA was 308 K. Experiments were performed under the assumption that the average junction temperature of 308 K did not affect the characteristics of the ohmic contact and the GaN-based materials. Before and after the stress test, we measured and analyzed current-voltage, light-current, light distribution on the LED surface, wavelength spectrum and relative external quantum efficiency (EQE). After the stress test, it was observed experimentally that the optical power and the relative EQE decreased. We theoretically investigated and experimentally proved that these phenomena are due to the increased nonradiative recombination rate caused by the increased defect density.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.