DOI QR코드

DOI QR Code

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure

다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석

  • Hui-Yeon Jang (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Su-Min Choi (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Mi-Seon Park (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Gwang-Hee Jung (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Jin-Ki Kang (AXEL) ;
  • Tae-Kyung Lee (Korea Institute of Industrial Technology) ;
  • Hyoung-Jae Kim (Korea Institute of Industrial Technology) ;
  • Won-Jae Lee (Department of Advanced Materials Engineering, Dong-Eui University)
  • Received : 2024.01.26
  • Accepted : 2024.02.13
  • Published : 2024.02.29

Abstract

β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

β-Ga2O3는 ~4.8 eV의 넓은 밴드 갭과 8 MV/cm의 높은 항복 전압을 가지는 물질로 전력소자의 응용 분야에서 많은 주목을 받고 있다. 또한, 대표적인 WBG 반도체 소재인 SiC, GaN, 다이아몬드 등과 비교했을 때, 높은 성장률과 낮은 제조 비용으로 단결정 성장이 가능하다는 장점을 가진다[1-4]. 본 연구에서는 다중 슬릿 구조를 이용한 EFG(Edge-defined Film-fed Growth) 법을 통해 SnO2 0.3 mol% 도핑된 10 mm 두께의 β-Ga2O3 단결정을 성장시키는 데에 성공했다. 성장 방향과 성장 면은 각각 [010]/(001)로 설정하였으며 성장 속도는 약 12 mm/h이다. 성장시킨 β-Ga2O3 단결정은 다양한 결정면(010, 001, 100, ${\bar{2}}01$)으로 절단하여 표면 가공을 진행하였다. 가공이 완료된 샘플은 XRD, UV/VIS/NIR Spec., Mercury Probe, AFM, Etching 등의 분석을 통해 결정면에 따른 특성을 비교하였다. 본 연구는 고전압 및 고온 응용 분야에서 전력반도체 기술의 발전에 기여할 것으로 기대되며 더 나은 특성의 기판을 선택하는 것은 소자의 성능과 신뢰성을 향상시키는데에 중요한 역할을 할 것이다.

Keywords

Acknowledgement

이 연구는 2024년 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원(20017105)과 2024년 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원(No. 2019R1A6C1010045), 2024년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0012451, 2024년 산업혁신인재성장지원사업)을 받아 수행된 연구임.

References

  1. H. Xue, Q. He, G. Jian, S. Long, T. Pang and M. Liu, "An overview of the ultrawide bandgap Ga2O3 semiconductor-based schottky barrier diode for power electronics application", Nanoscale Res. Lett. 13 (2018) 1.
  2. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback and J.A. Simmons, "Ultrawide-bandgap semiconductors: research opportunities and challenges", Adv. Electron. Mater. 4 (2018) 4. https://doi.org/10.1002/aelm.201600501
  3. M. Higashiwaki and G.H. Jessen, "Guest Editorial: The dawn of gallium oxide microelectronics", Appl. Phys. Lett. 112 (2018) 2.
  4. K. Zhang, Z. Xu, J. Zhao, H. Wang, J. Hao, S. Zhang, H. Cheng and B. Dong, "Temperature-dependent Raman and photoluminescence of β-Ga2O3 doped with shallow donors and deep acceptors impurities", J. Alloys and Compounds 881 (2021) 1.
  5. S. Zhang, X. Lian, Y. Ma, W. Liu, Y. Zhang, Y. Xu and H. Cheng, "Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method", J. Semiconductors 39 (2018) 2.
  6. M. Higashiwaki, Z. Galazka, K. Hoshikawa, A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, A. Mauze, J. Speck, O. Bierwagen, P. Vogt, P. Mazzolini, K. Sasaki, S. Yamakoshi, F. Alema, A. O sinsky, Y. Yao, R.F. Davis, L.M. Porter, Y. Kumagai, K. Konishi, K. Goto, H. Murakami, B. Monemar, Y. Oshima, S. Fujita, H. Nishinaka, K.D. Leedy, H. Wenckstern, D. Splith, M. Grundmann, H. Zhao, H. Peelaers, C.G. Van de Walle, J.B. Varley, O. Ueda, H. Yamaguchi, F. Tuomisto, A.T. Neal, S. Mou, K. Ghosh, A. Kumar, U. Singisetti, A.R. Arehart, S.A. Ringel, M.J. Tadjer, V.D. Wheeler, D.I. Shashin, M. Kasu, T. Onuma, M. Schubert, A. Mock, R. Korlacki, S. Knight, G. Wagner, V. Darakchieva, Z. Liu, T. Luo, T. Yanagida, G. Okada, N. Kawaguchi, N. Moser, A. Green, K. Chabak, E. Heller, G. Jessen, M. H. Wong, Y. Zhang, S. Krishnamoorthy, S. Rajan, H. Zhou, J. Noh, H. Bae, M. Si, P.D. Ye, Z. Hu, W. Li, H.G. Xing, J. Yang, M. Xian, R. Elhassani, F. Ren, S.J. Pearton, P. Schlupp, H. Wenckstern, T. Oshima, K. Mineo and D. Jena, "Gallium oxide: Materials properties, crystal growth, and devices", M. Higashiwaki, Ed., S. Fujita, Ed., Vol. 293 (Springer International Publishing, Cham, 2020) p. 1.
  7. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui and S. Yamakoshi, "High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth", Jpn. J. Appl. Phys. 55 (2016) 5.
  8. S. Bae, "Growth of various phases of gallium oxide", Enc. Appl. Phys. WILEY-VCH GmbH (2021) 12.
  9. A. Singh, O. Koksal, N. Tanen, J. McCandless, D. Jena, H. (Grace) Xing, H. Peelaers and F. Rana, "Intra- and inter-conduction band optical absorption processes in β-Ga2O3", Appl. Phys. Lett. 117 (2020) 1.
  10. H. Peelaers and C.G. Van De Walle, "Sub-band-gap absorption in Ga2O3", Appl. Phys. Lett. 111 (2017) 2.
  11. K. Hanada, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda and M. Kasu, "Origins of etch pits in β-Ga2O3(010) single crystals", Jpn. J. Appl. Phys. 55 (2016)
  12. K. Ogawa, N. Ogawa, R. Kosaka, T. Isshiki, T. Aiso, M. Iyoki, Y.Z. Yao and Y. Ishikawa, "AFM observation of etch-pit shapes on β-Ga2O3(001) surface formed by molten alkali etching", MSF. 1004 (2020)
  13. S. Sdoeung, K. Sasaki, K. Kawasaki, J. Hirabayashi, A. Kuramata and M. Kasu, "Characterization of dislocation of halide vapor phase epitaxial (001) β-Ga2O3 by ultrahigh sensitive emission microscopy and synchrotron X-ray topography and its influence on Schottky barrier diodes", Jpn. J. Appl. Phys. 62 (2023) 6.
  14. T. Taishi, N. Kobayashi, E. Ohba and K. Hoshikawa, "Line-shaped defects in bulk β-Ga2O3 single crystals grown by the vertical Bridgman method", Jpn. J. Appl. Phys. 62 (2023) 3.