Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.1.022

Fabrication of [320×256]-FPA Infrared Thermographic Module Based on [InAs/GaSb] Strained-Layer Superlattice  

Lee, S.J. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science)
Noh, S.K. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science)
Bae, S.H. (i3system Inc.)
Jung, H. (i3system Inc.)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.1, 2011 , pp. 22-29 More about this Journal
Abstract
An infrared thermographic imaging module of [$320{\times}256$] focal-plane array (FPA) based on [InAs/GaSb] strained-layer superlattice (SLS) was fabricated, and its images were demonstrated. The p-i-n device consisted of an active layer (i) of 300-period [13/7]-ML [InAs/GaSb]-SLS and a pair of p/n-electrodes of (60/115)-period [InAs:(Be/Si)/GaSb]-SLS. FTIR photoresponse spectra taken from a test device revealed that the peak wavelength (${\lambda}_p$) and the cutoff wavelength (${\lambda}_{co}$) were approximately $3.1/2.7{\mu}m$ and $3.8{\mu}m$, respectively, and it was confirmed that the device was operated up to a temperature of 180 K. The $30/24-{\mu}m$ design rule was applied to single pixel pitch/mesa, and a standard photolithography was introduced for [$320{\times}256$]-FPA fabrication. An FPA-ROIC thermographic module was accomplished by using a $18/10-{\mu}m$ In-bump/UBM process and a flip-chip bonding technique, and the thermographic image was demonstrated by utilizing a mid-infrared camera and an image processor.
Keywords
Infrared photodetector; Indium arsenide/gallium antimonide (InAs/GaSb); Strained-layer superlattice (SLS); [$320{\times}256$] Focal-plane array (FPA); Photoresponse (PR) spectrum; Thermographic image;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 C. Petchsingh, R. J. Nicholas, K. Takashina, and N. J. Mason, Semicond. Sci. Technol. 22, 194 (2007).   DOI
2 B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 91, 163511 (2007).   DOI
3 E. Plis, J. B. Rodriguez, H. S. Kim, G. Bishop, Y. Sharma, R. Dawson, S. J. Lee, C. E. Jones, V. Gopal, and S. Krishna, Appl. Phys. Lett. 91, 133512 (2007).   DOI
4 A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 263504 (2007).   DOI
5 R. Intartaglia, G. Raino, V. Tasco, F. D. Sala, R. Cingolani, A. N. Baranov, N. Deguffro, E. Tournie, B. Satpati, A. Trampert, and M. De Giorgi, J. Appl. Phys. 103, 114516 (2008).   DOI
6 A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, Laser & Photonics Rev. 3, 1 (2009).   DOI
7 W. Q. Ma, X. J. Yang, M. Chong, T. Yang, L. H. Chen, J. Shao, X. Lu, W. Lu, C. Y. Song, and H. C. Lin, Appl. Phys. Lett. 93, 013502 (2008).   DOI
8 B. Movaghar, S. Tsao, S. Tsao, S. A. Pour, T. Yamanaka, and M. Razeghi, Phys. Rev. B 78, 115320 (2008).   DOI
9 E. -T. Kim, Z. Chen, and A. Madhukar, J. Korean Phys. Soc. 49, 837 (2006).
10 S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008).   DOI
11 S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008).   DOI
12 A. Khoshakhlagh, H. S. Kim, S. Myers, N. Gautam, S. J. Lee, E. Plis, S. K. Noh, L. R. Dawson, and S. Krishna, Proc. of SPIE 7298, 72981P-1 (2009).
13 S. J. Lee, S. K. Noh, L. R. Dawson, and S. Krishna, J. Korean Phys. Soc. 54, 280 (2009).   과학기술학회마을   DOI
14 J. O. Kim, H. W. Shin, J. W. Choe, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 18, 245 (2009).   과학기술학회마을   DOI
15 J. O. Kim, H. W. Shin, J. W. Choe, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 18, 108 (2009).   과학기술학회마을   DOI
16 H.W. Shin, J.W. Choe, J.O. Kim, S.J. Lee, C.S. Kim, and S.K. Noh, J Korean Vac. Soc. 20, In print (2011).
17 D. L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987).   DOI
18 H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008).   DOI
19 E. Plis, J. B. Rodriguez, H. S. Kim, G. Bishop, Y. Sharma, R. Dawson, S. J. Lee, C. E. Jones, V. Gopal, and S. Krishna, Appl. Phys. Lett. 91, 133512 (2007).   DOI
20 S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008).   DOI
21 H. Mohseni, V. I. Litvinov, and M. Razeghi, Phys. Rev. B 58, 15378 (1998).   DOI
22 S. Maimon and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006).   DOI
23 S. J. Lee, S. K. Noh, E. Plis, S. Krishna, and K.-S. Lee, Appl. Phys. Lett. 95, 102106 (2009).   DOI
24 H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, Appl. Phys. Lett. 96, 033502 (2010).   DOI
25 R. Magri and A. Zunger, J. Vac. Sci. Technol. B, 21, 1896 (2003).   DOI