Browse > Article
http://dx.doi.org/10.14478/ace.2019.1045

Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry  

Kim, Junghwan (Department of Energy and Mineral Resources Engineering, Sejong University)
Publication Information
Applied Chemistry for Engineering / v.30, no.4, 2019 , pp. 499-503 More about this Journal
Abstract
Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with $6^{\circ}$ off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for $1{\times}1mm^2$ area was $9.61mA/cm^2$ for the solar cell with QW structure while $7.06mA/cm^2$ for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of $J_{sc}$ and EQE was caused by the suppression of recombination by QW structure.
Keywords
Heterojunction structure; Quantum well; Solar cells; Secondary ion mass spectrometry; Carrier recombination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Strong enhancement of solar cell efficiency due to quantum dots with built-in charge, Nano Lett., 11(6), 2311-2317 (2011).   DOI
2 I. E. Hashem, C. Z. Carlin, B. G. Hagar, P. C. Colter, and S. M. Bedair, InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties, J. Appl. Phys., 119(9), 095706 (2016).   DOI
3 I. E. H. Sayed, C. Z. Carlin, B. G. Hagar, P. C. Colter, and S. M. Bedair, Strain-balanced InGaAsP/GaInP multiple quantum well solar cells with a tunable bandgap (1.65-1.82 eV), IEEE J. Photovolt., 6(4), 997-1003 (2016).   DOI
4 G. K. Bradshaw, J. P. Samberg, C. Z. Carlin, P. C. Colter, K. M. Edmondson, W. Hong, C. Fetzer, N. Karam, and S. M. Bedair, GaInP/GaAs tandem solar cells with InGaAs/GaAsP multiple quantum wells, IEEE J. Photovolt., 4(2), 614-619 (2014).   DOI
5 R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, GaSb/InGaAs quantum dot-well hybrid structure active regions in solar cells, Sol. Energy Mater. Sol. Cells, 114, 165-171 (2013).   DOI
6 S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells, Semicond. Sci. Technol, 32(1), 015006 (2017).   DOI
7 J. Kim and H.-B. Shin, Effect of substrate off-orientation on the characteristics of GaInP/AlGaInP single heterojunction solar cells, Korean J. Chem. Eng., 36(2), 305-311 (2019).   DOI
8 M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, Progress in quantum well solar cells, Thin Solid Films, 511, 76-83 (2006).   DOI
9 K. Toprasertpong, T. Inoue, Y. Nakano, and M. Sugiyama, Investigation and modeling of photocurrent collection process in multiple quantum well solar cells, Sol. Energy Mater. Sol. Cells, 174, 146-156 (2018).   DOI
10 F. Wu, H. Lin, Z. H. Yang, M. D. Liao, Z. L. Wang, Z. P. Li, P. Q. Gao, J. C. Ye, and W. Z. Shen, Suppression of surface and Auger recombination by formation and control of radial junction in silicon microwire solar cells, Nano Energy, 58, 817-824 (2019).   DOI
11 M. C. Lynch, I. M. Ballard, D. B. Bushnell, J. P. Connolly, D. C. Johnson, T. N. D. Tibbits, K. W. J. Barnham, N. J. Ekins-Daukes, J. S. Roberts, G. Hill, R. Airey, and M. Mazzer, Spectral response and I-V characteristics of large well number multi quantum well solar cells, J. Mater. Sci., 40(6), 1445-1449 (2005).   DOI
12 G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, 26.1% thin-film GaAs solar cell using epitaxial lift-off, Sol. Energy Mater. Sol. Cells, 93(9), 1488-1491 (2009).   DOI
13 S. Zhong, Z. Huang, X. Lin, Y. Zeng, Y. Ma, and W. Shen, High-efficiency nanostructured silicon solar cells on a large scale realized through the suppression of recombination channels, Adv. Mater., 27(3), 555-561 (2015).   DOI
14 J. Nelson, J. Barnes, N. Ekins-Daukes, B. Kluftinger, E. Tsui, K. Barnham, C. T. Foxon, T. Cheng, and J. S. Roberts, Observation of suppressed radiative recombination in single quantum well p-i-n photodiodes, J. Appl. Phys., 82(12), 6240-6246 (1997).   DOI
15 S. C. McFarlane, J. Barnes, K. W. J. Barnham, E. S. M. Tsui, C. Button, and J. S. Roberts, Space charge effects in carrier escape from single quantum well structures, J. Appl. Phys., 86(9), 5109-5115 (1999).   DOI
16 Y. Jeong, D.-W. Park, J. K. Lee, and J. Lee, III-V tandem, $cuinGa(S,Se)_2$, and $Cu_2ZnSn(S,Se)_4$ compound semiconductor thin film solar cells, Appl. Chem. Eng., 26(5), 526-532 (2015).   DOI
17 A. Luque, E. Antolin, P. G. Linares, I. Ramiro, A. Mellor, I. Tobias, and A. Marti, Interband optical absorption in quantum well solarcells, Sol. Energy Mater. Sol. Cells, 112, 20-26 (2013).   DOI
18 R. M. France, J. F. Geisz, I. Garcia, M. A. Steiner, W. E. McMahon, D. J. Friedman, T. E. Moriarty, C. Osterwald, J. Scott Ward, A. Duda, M. Young, and W. J. Olavarria, Quadruple-junction inverted metamorphic concentrator devices, IEEE J. Photovolt., 5(1), 432-437 (2015).   DOI