• Title/Summary/Keyword: a chaotic systems

Search Result 264, Processing Time 0.024 seconds

A study on the Convergence Condition of Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • This paper analyzes on the chaos characteristics of the chaotic neural networks and presents the convergence condition. Although the transient chaos of neural network sould be beneficial to overcome the local minimum problem and speed up the learning, the permanent chaotic response gives adverse effect on optimization problems and makes neural network unstable in general. This paper investigates the dynamic characteristics of the chaotic neural networks with the chaotic dynamic neuron, and presents the convergence condition for stabilizing the chaotic neural networks.

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.

Synchronization of Dynamical Happiness Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • Chaotic dynamics is an active research area in fields such as biology, physics, sociology, psychology, physiology, and engineering. Interest in chaos is also expanding to the social sciences, such as politics, economics, and societal events prediction. Most people pursue happiness, both spiritual and physical in many cases. However, happiness is not easy to define, because people differ in how they perceive it. Happiness can exist in mind and body. Therefore, we need to be happy in both simultaneously to achieve optimal happiness. To do this, we need to synchronize mind and body. In this paper, we propose a chaotic synchronization method in a mathematical model of happiness organized by a second-order ordinary differential equation with external force. This proposed mathematical happiness equation is similar to Duffing's equation, because it is derived from that equation. We introduce synchronization method from our mathematical happiness model by using the derived Duffing equation. To achieve chaotic synchronization between the human mind and body, we apply an idea of mind/body unity originating in Oriental philosophy. Of many chaotic synchronization methods, we use only coupled synchronization, because this method is closest to representing mind/body unity. Typically, coupled synchronization can be applied only to non-autonomous systems, such as a modified Duffing system. We represent the result of synchronization using a differential time series mind/body model.

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF

Chaotic Vibration of a Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선 파이프 계의 혼돈 운동 연구)

  • 박철희;홍성철;김태정
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.489-498
    • /
    • 1997
  • In this paper, chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonliear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which has the external and parametric excitation with a same frequency. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Numerical simulations are performed to demonstrate theoretical results and show the strange attractor of the chaotic motion.

  • PDF

Synchronization of Chaos Systems via Sampled-Data Control (카오스 시스템의 동기화를 위한 샘플치 데이터 제어)

  • Lee, Tae-H.;Park, Ju-H.;Kwon, O.M.;Lee, S.M.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.617-621
    • /
    • 2012
  • This paper considers the synchronization problem of chaotic systems. For this problem, the sampled-data control approach is used to achieve asymptotic synchronization of two identical chaotic systems. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find the sampled-data feedback controller which achieves the synchronization between chaotic systems. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

Design of generalized predictive controller for discrete-time chaotic systems (아산치 혼돈 시스템의 제어를 위한 일반형 예측 제어기의 설계)

  • 박광성;주진만;박진배;최윤호;윤태성
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.53-62
    • /
    • 1997
  • In this study, a controller design method is proposed for controlling the discrete-time chaotic systems efficiently. The proposed control method is based on Generalized Predictive Control and uses NARMAX models as controlled models. In order to evaluate the performance of the proposed method, a proposed controller is applied to discrete-time chaotic systems, and then the control performance and initial sensitivity of the proposed controller are compared with those of the conventional model-based controler through computer simulations. Through simulations results, it is shown that the control performance of the proposed controller is superior to that of the conventional model-based controller and shown that the peorposed controller is less sensitive to initial values of discrete-time chaotic systems in comparison with the conventional model-based controller.

  • PDF

Chaotic Forecast of Time-Series Data Using Inverse Wavelet Transform

  • Matsumoto, Yoshiyuki;Yabuuchi, Yoshiyuki;Watada, Junzo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.338-341
    • /
    • 2003
  • Recently, the chaotic method is employed to forecast a near future of uncertain phenomena. This method makes it possible by restructuring an attractor of given time-series data in multi-dimensional space through Takens' embedding theory. However, many economical time-series data are not sufficiently chaotic. In other words, it is hard to forecast the future trend of such economical data on the basis of chaotic theory. In this paper, time-series data are divided into wave components using wavelet transform. It is shown that some divided components of time-series data show much more chaotic in the sense of correlation dimension than the original time-series data. The highly chaotic nature of the divided component enables us to precisely forecast the value or the movement of the time-series data in near future. The up and down movement of TOPICS value is shown so highly predicted by this method as 70%.

  • PDF

Temperature Analysis of the Voltage Contolled Chaotic Circuit (전압 제어형 카오스회로의 온도특성 해석)

  • Park, Yongsu;Zhou, Jichao;Song, Hanjung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3976-3982
    • /
    • 2013
  • This paper presents a temperature analysis of the chaotic behavior in the voltage controlled CMOS chaotic circuit. The circuit is based on a simple nonlinear function block which is needed for chaotic signal generation. It consists of a NFB (nonlinear function block), a level shifter and non-overlapping two-phase clock for sample and hold. By SPICE simulation, chaotic dynamics such as frequency spectra and bifurcations according to the temperature variations were analyzed. And, it was showed that the circuit can generate discrete chaotic signals within control voltage in the range from 1.2 V to 2.3 V in a specific temperature condition of $25^{\circ}C$.

Generalized Predictive Control of Chaotic Systems Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 일반형 예측 제어)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.421-424
    • /
    • 2003
  • This paper proposes the generalized predictive control(GPC) method of chaotic systems using a self-recurrent wavelet neural network(SRWNN). The reposed SRWNN, a modified model of a wavelet neural network(WNN), has the attractive ability such as dynamic attractor, information storage for later use. Unlike a WNN, since the SRWNN has the mother wavelet layer which is composed of self-feedback neurons, mother wavelet nodes of the SRWNN can store the past information of the network. Thus the SRWNN can be used as a good tool for predicting the dynamic property of nonlinear dynamic systems. In our method, the gradient-descent(GD) method is used to train the SRWNN structure. Finally, the effectiveness and feasibility of the SRWNN based GPC is demonstrated with applications to a chaotic system.

  • PDF