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Generalized Predictive Control of Chaotic Systems
Using a Self-Recurrent Wavelet Neural Network

X7] 37 Aol MF H2US o|8F E= A|2H ddY ofF Hof

Sung Jin You®, Yoon Ho Choi™, Jin Bae Park’

“dAdtE A7) WA
< AV SR AAF Y

Abstract : This paper proposes the generalized predictive control(GPC) method of chaotic systems using a
self-recurrent wavelet neural network(SRWNN). The poposed SRWNN, a modified model of a wavelet neural
network(WNN), has the attractive ability such as dynamic attractor, information storage for later use. Unlike
a WNN, since the SRWNN has the mother wavelet layer which is composed of self-feedback neurons,
mother wavelet nodes of the SRWNN can store the past information of the network. Thus the SRWNN can
be used as a good tool for predicting the dynamic property of nonlinear dynamic systems. In our method,
the gradient-descent(GD) method is used to train the SRWNN structure. Finally, the effectiveness and
feasibility of the SRWNN based GPC is demonstrated with applications to a chaotic system.
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I . Introduction

Recently the neural network(NN) had been shown
to be of benefit for use in control of chaotic
systems{l1]. And a wavelet neural network (WNN),
which absorbs the advantage of high resolution of
wavelets and the structure of Ilearning and
feedforward of NN, is proposed to guarantee the
fast convergence{2-3]. But both NN and WNN are a
static mapping, and does not represent a dynamic
system mapping without the aid of tapped delays.
To solve this problem, we propose self-recurrent
wavelet neural network (SRWNN), which combines
the advantage of attractor dynamics and information
storage for later use of recurrent neural network
and the advantage of fast convergence of WNN.
And we design the, generalized predictive controller
using the proposed SRWNN. In the learning method,
We use the gradient-descent(GD) method to train
the SRWNN structure. Finally, the effectiveness and
feasibility of the SRWNN based GPC is
demonstrated with applications to a chaotic system.

1. SRWNN identification for chaotic systems
1. SRWNN structure

This section discusses the structure of the
SRWNN. A schematic diagram of the proposed
SRWNN structure is shown in Fig. 1, which has
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N
proposed SRWNN consists of four layers, which are

; inputs, one output, and N, wavelet nodes. The
input layer, mother wavelet layer, product layer and
output layer. Each node of mother wavelet layer has
a mother wavelet and a self-feedback loop. In this
paper, we choose the first derivative of a Gaussian
function, @(x) =—xexp(—1/2¢%) as a mother wavelet.
A wavelet ¢, of each node is derived from its

mother wavelet ¢ by

s . —m
¢jk(2;‘)¢)=¢(ﬂa‘k—m&), with zik:_u-%i,»Tﬁ (1)
b

where, m, and d are the translation factor and
the dilation factor of the wavelets, respectively. The
subscript jk indicates the kth input term of the jth
wavelet. In addition, the inputs of this layer for
discrete time » can be denoted by

un)=x mM+en—1-8, (2)

where, ¢, denotes the weight of the self~ feedback
loop. The input of this layer contains the memory
terms ¢ (n—1), which store the past information of
the network. This key aspect is the apparent
different between a WNN and a SRWNN. Also, the
structure of the SRWNN is the same that of WNN
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when 6,=0. Thus we can see that SRWNN is a
generalization system of the WNN.,

Mother

waviet layer Product layer OCutput iayer

input layer

Fig. 1 Structure of the proposed SRWNN

The nodes in product layer are given by the
product of the mother wavelet as follows:

0,()0 =ﬁ¢(lﬁ) 3)
- [ (5520 oo -4 (2722 )]

Finally, the output of a SRWNN is composed by
each self-recurrent wavelet and parameters as
follows:

y(n)=,Ngw,¢,(X)+§a,,x, (4)

where, w; is connection weight between product

nodes and output nodes, and a; is connection

1
weight between input nodes and output nodes. W is
weighting vector of the SRWNN:

W=la,mud;8,w;17 (5)

Here, the initial value of 4, is given 0. That is,
there are no feedback units initially.

2. Identification of chaotic systems with SRWNN

This paper uses the series-parallel method for
identification of a chaotic system. The identification
model of a chaotic system consists of SRWNN and
tapped delay lines. The current input and the most
recent output of the system are fed into the
SRWNN. And the error e {n) between the actual
system output and the SRWNN output is used to
train the SRWNN. The current SRWNN output

represents as follows:
KW=Ay (n—D,...,y{n—N),dn—1),...4n—N)) (6)

where, N, and N, indicate the number of external
inputs and input state variables, respectively. And
yAn) and {n) denote the chaotic system output
and the identification input, respectively.

In this paper, we use the gradient-descent(GD)
method to train the SRWNN structure. OQur goal
is to minimize the following quadratic cost
function:

T =%y D=snP" S e fn? D

where, y (n) is the chaotic system output and (»)
is the current output of SRWNN for the discrete
time =n By using the gradient-descent method,
weight values of the SRWNN are adjusted so that
the error is minimized after a given number of
training cycles. The gradient-descent method may
be defined as:

Wn+1) = Wn)+ AW n) (8)

=Wn+rp— g]u'((:;)

where, 7 p represents the leamming rate of the
SRWNN parameter.

The partial derivative of the cost function with
respect to W n) is

3] {n) de ()

T O T ) o)
o 3(m)
= el(”) AW n)

By recursive application of the chain rule, the error
term for each layer is first calculated, then the
parameters in the corresponding layers are adjusted.
The components of the weighting vector are

P k(”n) =x, (10)
avm)_ _ w; 80X an
dm 4 (n) — d; 0z,
o w904 (12
ad () ~ di 7 * az,
avm) _ w; 90 (%)
26,00 —d, P Do a3
2~ 0420 14)

where,
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i, SRWNN based generalized predictive control

In this section, we propose the generalized
predictive  control(GPC)  system based on the
SRWNN. We assume that the output data of the
SRWNN are available on-line for the design and
use of the controller. In our design method, an
on-line system based on a SRWNN is employed
and a nonlinear feedback controller with a predictive
control scheme is implemented. The overall
configuration of the SRWNN based GPC system is
shown in Fig. 2, where the SRWNN output 3{#n) is
controlled to track the reference #(n).

— m’i e (7 et )

Fig. 2 Structure of GPC using SRWNN

Our propose is to find the optimal control input
w(n) in order to minimize the control error function
as follows:

Jc(n+1)=~12L(ec(n+1)2+xAu<n) ) (15)

where, edm=#Hn)—3xnm). A=0 is the control
increment weighting.

To minimize J(n), the control input (») is
updated via the GD scheme:

wn+ D) =um)— 7 ‘zj;((;’)) (16)

where 7, is the learning rate of the control
input. We can see that the controller relies on the
identification of the SRWNN., Thus to improve the
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controller performance, it is necessary that the
SRWNN output well approaches the chaotic
system output. In this aspect, the SRWNN, which
has the information storage ability, is a suitable
tool. Differentiating the result with respect to
#(m), it can be obtained that

a—i(%=~ec(n+l)%n+/mu(n) (17

where an+1)/8u{n) can be analytically
evaluated by SRWNN structure, Eqn. (4) as
follows:

an+l _ vn+l) dX

ddmy X  0um (18
o g7y 804X k}
Ady 0z, k=N 41

where 3X/3u{m)=[0 0...10...0]7.

So  far, we described the algorithm for
one-step ahead predictive control scheme. Next,
let this algorithm is extended by using the
technigue in GPC theory. Unlike ordinary
predictive controls, a GPC uses a receding
horizon control strategyl4]. The future values of
reference signal and the chaotic output are needed
to formulate the control signal. The SRWNN can
be used to predict future values of the chaotic
system. We define to be the same the control
horizon N, as the prediction horizon N,. Using
this definition, we can denote the following
vectors.

R={7,0y 74is ... ’-+N,]T (19)
Yz[yn+1 Yntz vor yn+N,]T @0
E=le,) @iy .- €uin, 17 2D
U= [ tyry Upag ooe Unan, 17 (2

as the future values of the reference signal, the
SRWNN output, the error vector between two
vectors, and the control input vector. In addition,
the control error function is defined as follows:

=—%—[ETE+AA ga] (23)

Using the gradient projection method, the control
input vector U is updated in each iteration by

U= U7 BG+IMU (24)
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where G is the gradient of the control error
fuction with respect to U, which can be derived
from the SRWNN and be easily evaluated.

IV, Simulation resuit

To visualize the validity of the proposed
generalized predictive control scheme, we consider
the Duffing
continuous-time chaotic system, and we compare the
result of the proposed SRWNN based GPC with
those of a WNN based GPC. The state equation of
the Duffing system is

system, which are the representative

x| _ %y 9
{;‘z] [a,xl—x:’l—azxz+bms(ut)+u] (25)

where, a,=1.1, a,=04, 5=2.1 and w=138.

In tracking Duffing systems, we define the initial
system states as (0, 0) and the sampling time is
chosen as 0.05. Also the prediction horizon is 3.
Reference signal is defined as one periodic solution
in the case of b=2.3. The simulation environment
and the performance measures are represented as
shown in Table 1 and Table 2. And Fig. 3 shows
the SRWNN based GPC result. From the results of
the Table 2, we confirm that the SRWNN based
GPC shows a better performance as compared with
the WNN based GPC. Also we can see that the
network structure of the proposed SRWNN is
simpler than that of the WNN.

V. Conclusion

This paper presents the self-recurrent wavelet
neural network based GPC method for the chaotic
nonlinear systems. Since the self-feedback units act
as memory elements, the SRWNN has the capability
to temporarily store information. The SRWNN is
used to perform the on-line multi-steps prediction.
And simulation results show that the SRWNN based
GPC has a better performance as compared with the

WNN based GPC.

Table 1 Comparison of the simulation environments

Number of mother wavelet

SRWNN Nllul:er Qi a?t—state f
Numiber of ‘past.input

(Oun) ID. learning rate 0.01
Control learning tate 0.005
Number of mother wavelet 15
Number-of past state . 2

WNN  |Number of past input:: 1
ID. leatning rate - 0.01
Control leaming rate 0.01

Table 2 Comparison of the performance
ID-MSE Control MSE
SRWNN{our) | WNN [SRWNN(ur) | WNN
x, state 0.010 0.062 0.070 0.222
x5 state 0.0065 0.027 0.206 0.355

SRWNN GPC (state x1)

---- Reference

4

4
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Fig. 3 The control results of Duffing system
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