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Abstract - In this paper, the hybrid state space self-tuning control technique is studied within the framework of fuzzy systems
and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical
systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital
control of chaotic systems. An equivalent fast-rate discrete-time state-space mode! of the continuous-time system is
constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed
discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is
then converted into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed
technique enables us to systematically and effectively carry out framework for modeling and control of chaotic sysiems. The
proposed method has been successfully applied for controlling the chaotic trajectories of Chua’s circuit.

1. Introduction

Recently, most attention has been focused on developing
techniques for the control of chaotic dynamical systems[1].
While chaos has become one of the most focusing research
topics in the literature, we have witnessed rapidly growing
interest in making the control system more intelligent and
efficient. Among intelligent approaches, fuzzy control has
enjoyed remarkable success in various applications(2].
Moreover, recent advances in fuzzy control have laid the
foundation for intelligent control of various nonlinear
processes, including chaotic systems. In this paper, we
develop hybrid state space self-tuning fuzzy control
techniques for digital control of chaotic systems.

Most real dynamic systems are described in a continuous-
time framework. The rapid advances in digital control theory
and the availability of high performance, low cost
microprocessors have led the development of digital
controllers for analog systems. Since the design of a
continuous-time system using the digital counterpart is not
closely coupled with the continuous aspects of the real
environments, it i1s desirable to develop a hybrid control
scheme[3].

In the past years. the adaptive control concepts[3-7]) have
been extended to combine a discrete-time adaptive
mechanism (for updating the controller parameters) with a
continuous-time control theory for self-tuning control of
hybrid systems. Karwick[5] developed a state space self-
tuning for pole assignments of continuous-time systems, and
Helliot[6] proposed a discrete adaptation techniques for the
control of continuous time processes.

For practical realizations of the developed advanced self-
tuning algorithms for the adaptive control of sysiems, it
becomes necessary to utilize dual-rate sampling schemes. A
fast-rate sampling scheme is used to perform parameter
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identification and fast-rate controller design, while a slow-
rate sampling scheme is empl'oyed to establish a siow-late
controller which takes into account the performance of the
analog controller and the computational delays in the
identification and control processes. The conventional self-
tuning schemes can hardly control nonlinear state-space
systems and require more investigations. This paper proposes
a hybnd state-space self-tuning fuzzy control scheme to
perform digital control of non-linear state space systems.

Fuzzy inference systems employing fuzzy if-then rules can
formulate the qualitative model [9]. By embedding the fuzzy
inference system into the framework of a digital redesign,
hybrid state-space self-tuning fuzzy control is obtained. In
this work, fuzzy inference systems consist of a fuzzy
modeling and fuzzy control. The particular fuzzy modeling
framework employed here is the so-called Takagi-Sugeno
model[11]. Once the fuzzy model representation of a chaotic
system is obtained, we can apply some of the newly
developed fuzzy control design techniques to the control of
the chaotic system.

In this paper, new state space self-tuning fuzzy control
scheme is applied to two Chua’s circuit systems.

2.Fuzzy Modeling

2.1. Takagi-Sugeno Fuzzy Model

Fuzzy inference systems are known as fuzzy rule based
systems. fuzzy models or fuzzy controllers when used as
controllers. In this paper. Takagi-Sugeno(TS) fuzzy inference
system. where local dynamics in different state space regions
are represented by linear model, is used to model a chaotic
system. The main characteristics of a TS fuzzy model of the
system 1s to express the local dynamics of each fuzzy rule by
a linear system model. The overall fuzzy model of the system
is achieved by fuzzy blending of the linear system models[2].



The ith rule of the TS fuzzy model is of the following form:

Rulei: IFx(kT)is M| and..and x""V(kT)is M|
THEN x(KT +T) = Fx(kT)+ G,u(kT) (1)
(i=1,2,..,79

where x(kT) is state variables, u(kT) is the control input, and r
is the number of rules. M is the fuzzy sets and F; and G, are
state matrices.

Using the defuzzification method to obtain the overall
output of the dynamic fuzzy model, it can be expressed as the
following :

Y wi (KT)(FX(KT) + Gu(kT))
x(kT +T) ==L - :
2 w; (KT
i=l

= u (KT Fx(KT)+ Gu(kT)) )
i=1

= F(u(T)X(KT) + G(u(KT ))u(kT)

where, w; (kT') = H M} (x(j_l)(kT))
Jj=1

w; (KT

r

N wikT)
i=1

MKT) = (g (KT, o (KT ), -+, 1, (KT))

1 (kT) =

and M;(xY""(kT)) is the grade of membership of
xU™DKT) in M! and w,(kT) is the firing strength of ith
rule.

The open-loop system of (2) is

Y w,(KT)Fx(kT)
X(kT) = =— (3)

Y wikT)
i=1

where it is assumed that

Swit) > 0, w() > 0, i=12..,r
i=1

2.2. Fuzzy Modeling of Chua’s Circuit

The chaotic system which is so-called Chua’s circuit is a
simple electronic system, which consists of one inductor (L),
two capacitors (C,, C,), one linear resistor (R) and one
piecewise-linear or nonlinear resistor (g). Chua’s circuit has
been shown to possess very rich nonlinear dynamics such as
bifurcations and chaos [15].

The dynamic equations of Chua’s circuit is described by

. 1(1
Var =E(E (ch _VCJ)_g(vCJ)) 4)

. 1 (1 .
Vea =a[;("c1 —VC2)+lL] (5)

: 1 ,
= z (_ Ver — Ro’L) (6)

where v, v, and i, are the state variables.

Consider two types of characteristic of the nonlinear
resistor g(v,). One is the well-known piecewise-linear
characteristic and the other is a cubic one.

2.2.1. Case 1: g(v,,) is piecewise-linear.
1
8(vc1) =Gy +5 (Ga -G, ) (]Va + El""m - El) )

where G,, G, < 0.

(v}

<l

—f——dm
f——————--a
<

Fig. 1 Resistor characteristic in the case of
piecewise-linear

We aim to obtain a fuzzy model in the open loop form (3)
for Chua’s circuit with characteristic (7). Assuming
ve €[-d.,d], d>E >0, the following form to bound g(v,,)
is obtained :

&e) =G, t))]
G, -G, )E
8:(vep) = (Ga +(_ad_‘b‘)“}a =Gy, 9
where G=G, +(G“j+")E.

Chua’s circuit become a linear system if G,, and G, are
same. With G, # G, , the trapezoidal membership functions
are used to model the Chua’s circuit.

1

M,

Q

-d -€ 3 d

Fig. 2 Membership functions in the case of
8(v,,) is piecewise-linear

Denote x=[v¢,,vc,,i; )" . The fuzzy inference rules can be
represented by the followings :
Rule 1: IF v, is M,( v,) (near 0), THEN x(1) = Ax(t)

Rule 2: IF v, is My(vc,) (near *d ), THEN x(t) = A,x(¢)
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where
1 6 1,
CR C C\R
A = 1 _ 1 _1_
C,R C,R C,
0 1R
| L L |
and
1.6 1
C,R ( C\R
A, = 1 _ 1 L
C,R C,R C,
0 1 R
i L L |

2.2.2. Case 2: g(v,,) is cubic.

glve)=ave, + ch,3 (where a<0, ¢>0) a0

Similarly as in 2.2.1, assuming v, e€[-d,d], d >E>0,
the following form to bound g(v,,) is obtained :

&i1(ver) =avg, . (11)
gz(Vc1)=(a+Cd2)"cn =G, (12)
The membership functions are derived as :

vV
Ml(va>=1—[£) (13)

d

v

M2(VCI)=1_M1(VC1)=['%] (14)

The fuzzy inference rules can be represented by the
followings :
Rule 1: IF v¢, is M,(v¢)) (near 0), THEN x(t) = A x(?)

Rule 2: IF v, is My(ve)) (near *d ), THEN x(1) = A, x(t)

where
[ 1 _a 1 0 ]
CR C, CR
A= ClR —CIR 23_
2 2 2
0 1R
L L L |
and
i 3
1.6 1,
CR C, CR
A 1 11
2 C,R C,R C,
0 1 R
A L L |

3.Hybrid State Space Self-Tuning Fuzzy Control

In order to synthesize fuzzy control laws for the

stabilization of nonlinear systems, the hybrid state space self-
tuning fuzzy control technique is used.

3.1. Optimal control with pole placement
Consider the linear controllable continuous-time system
described by
x.()=Ax.(t)+Bu (1)
y(6)=Cx (1)

The cost function for the system in Eqn. (3) can be
expressed as

15)

7= [ [ 00x. 0+ 4l ORu, 0 d (16)
where Q and R are n x n nonnegative definite and m x m
positive definite symmetric matrices. The feedback control
law, which minimizes the performance index, is expressed as

u (t)=—-K. x () +Er(t)=—R'B Px. () + E.r(t)  (17)
where K. is the feedback gain, E, is the forward gain, r(t) is a
reference input, and P is a non-negative symmetric matrix
which can be solved by Riccati equation

PBR'BP-PA-A"P-Q=0, (18)
with (Q, A) detectable. By this solution, the overall closed-
loop system becomes

x,()=(A- BK,)x (1) + BE, u_(t) (19)
where K, is R7'B"P and the eigenvalues of A-BK, exist in
the open left-half plane of the complex s-plane. Our objective
is to determine Q, R and K¢ so that the closed loop system in

(19) has its eigenvalues lying on or within the hatched region
of Fig. 3.

‘klrn

s-plane

Re

(0.0)

Fig. 3 Region of interest in the s-plane

Lemma 1 [4]: Let (A, B) be the pair of the given open loop
system in (15). Also let h20 represent the prescribed
degree of relative stability. Then the eigenvalues of the closed
loop system A—BR™'BTP lie to the left of the —h vertical
line, with the matrix P being the solution of the Riccati
equation
PBR'BTP-P(A+hl)-(A+hl,)' P=0, (20)

Note that the use of the degree of relative stability A in (20)
for finding the optimal control gain (RB"P) is highly
recommended if the model of interest is an approximation of
the original continuous-time system.
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Lemma 2 [14]: Let the given stable system matrix Ae R™"
in (15) have eigenvalues AA,.“ (f=1,---,n7) lying in the open
hatched sector of Fig. 1 in the s-plane and eigenvalues
}:f (i=1,---,A%) outside that sector with Ai=7A"+A". Now,

consider the two Riccati equations with the assigned R>0

OBR™'B"Q~0(-A*) - (-A* 0 =0, @1

PBR'B'P-PA-ATP-0=0, (22)
Then, the optimal closed-loop system matrix

A, =A-BK,=A-B(R'B'P) (23)

will enclose the invariant eigenvalues i,-’(i =1,---,n") and
at least one additional pair of complex conjugate eigenvalues

enter the open sector of Fig. 3, for the constant gain ¥ in

(23) satisfying
2
y> max{l bHNb” +ac Vb““} 24)
a
where a=tr[(BR"B"P)*], b=u[BR'BT PA],

=tr[BR"BTQ]/2 and tr[-] denotes the trace of #{]. If

c=0, all eigenvalues of A. have been optimally placed in the

desired open sector of Fig. 3.

3.2. Continuous-time design procedure

The continuous-time design procedures are described as
follows:
Step 1: Let (A, B) be the given system matrices as in (15).
Specify the value of A and the weighting matrix R > 0. Set
i=0 and denote A =Aand y;=1for i=0. Solve Eq.
(20) for P (denoted by P, ) to obtain the closed-loop system
A, =A ~BK, where K,=y,R"'B"P.
Step 2: Set i:=i+1] and solve Eq. (21) with A= A, to find
0 (denoted by 0,). If ¢ =1[BR"'B"Q,}/2=0, goto Step 4.
Step 3: Solve Eq. (22) with A=A, and Q = Q,- to
determine P (denoted by P, ) and to obtain the closed-loop
system A, =A —BK,, where K,=¥,R"'B"P, and v, isa
determined from (24). Go to Step 2.
Step 4: The desired optimal control law is

u ()=—K x, (1) +E.r(t) (25)

i-1 . . .
where K, =Y j=0 K ; is the desired state-feedback gain and
E_ is a forward gain. For tracking a constant reference input

r(t), the performance index in (16) can be written as

J=[7 {[Cx, (1) - rO) Q,ICx, (- r()+u (Ru, (D)])ar
(26)
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where the weighting matrix @, can be chosen from the

aforementioned steps as

Q, =2hPy+ Y [Q; +(r;~DP,BR™B"P})r,

27
j=1

The desired optimal tracking control law [15] is

u,)=-K,x, )+ E,r(t) (28)
where K, =R'BTP,, P, is the solution of

A"P.+PA-PBR'B"P.+C"Q,C=0; (29)
and

E,=-R'BT(A-BK,)TCT9,. (30)

Note that when C =1, the feedback gain K, in (25) is
identical to K, in (28) and the forward gain E, in (25) can
be chosen as E, in (28).

3.3. Digital redesign by state matching

For the implementation of the digital-time control law, the
obtained continuous-time control law is converted into an
equivalent digital law. The digital redesign method matches
the closed-loop state x.(r) at r=kT, and digitally controlled
state x(t) at t=«T, .

Using the bilinear transformation method with a sampling
time T, the control law is developed in the following.

The equivalent discrete-time control law and state equation
are described by

uy(kT,) =~K ,x,(kT )+ E,r(kT,)
Jor kT, <t<kT, +T,

Xy (kT +T) = Fx,y (KT;) + Guy (KT
YTy = Cxy (k)

€Y
(32)

where F=e*™ and G=[F-1,]A"'B.

Therefore, the closed-loop discrete-time system with the
sampling time 7, is

Xy kT, +T))=(F = GK ) )x, (kT )+ GE ;r(kT,) 33)

where F and G are the equivalent discrete-time state matrices,
and K, and E, is the equivalent discrete-time feedback gain
and forward gain, respectively.

Applying the block-pulse function method [4] to
approximate the u,(t) in the interval kT, and (k+1)T, results in

u (t) = i—;(uc GT,)+u, (T, + T, (1) (34)

i=)
where @(t) is the block-pulse function defined as follows:

1 foriT, <t<(i+1]T,

35
0 otherelse (35)

¢,‘(t):{

Using the block-pulse function (35) yield



X (KT, + T,) = P, (KT,) + > Glu, (T, +4,GT, +T,)|36)

where F=e¢*" and G=(F-I)A"'B. Assuming
r(t) =r(kT,) over each with t=kT, and r=kT+T,, respectively.
Substituting the discretized control law in (25) into the open
loop system in _(36) results in the following approximated
closed-loop system :

-1
xc<kTs+Ts)=(1n+%GKc] (F—%GKC}(.(kTa
3 (37)
+(1n +%GKC] GE, r(kT,)

Equating x. (kT +7,) and x,(kT,)in (37) to respective
x4 kT, +T,) and x,(kT,) in (33) gives

-1
F-GK, =(1m +%Gl<c] (F——;—GKC] (38)

and

=]
GE, = [1" +%GK[) GE. (39)

The desired digital gains (K,, E;) in (31) can be solved
from (38) and (39) as follows:

K, =%(1n +%KCG)" K (F+1) (40)

E, =, +—;-KCG)"' E, (41)
3.4. Model conversions

To implement the obtained digital control lawin (31), we
need to convert a fast-rate sampling model into a slow-rate
sampling model is needed.

1 2
F\=2H 2
A——ln( )_T (4 )

where H=(F-I XF+1,)". And the matrix B can be
found by
B=A(F-1)'G 43)
The conversion of a fast-rate digital model to a slow-rate
digital model can be carried out as follows.

F =erl = )" =F" (44)
G =(F,-1,)A"B=(F,-1,XF~1,)'G (45)
4.Simulation
Consider Chua’s circuit with control inputs
. 1(1
Ve =E(;("cz 'Vc1)_ g(vCl)]+ u, (46)
v —-l—(i(v —ve, +i )+u 47
C2 CZ R Cl Cc2 L 2

: 1 ,
U3 =z(“ Ve _Ro’L)+”3 (48)

The fuzzy rules of the model and control are as follows:
Continuous state space model
Rule 1: IF ve, is M,(v¢)), THEN x_(t) = A x. () + Byu,(t)
Rule 2: IF v, is My( ve,), THEN x, (£) = A,x, (£) + B,u (1)
Conti L |

Rule 1 : IF v¢, is M,( ve,), THEN u, () =—K!x_(t)

Rule 2 : IF v¢, is My( vey), THEN u, (1) =—K2x,(2)
In order to use the digital redesign method, the continuous
state space system need to be converted into digital state

space system. The fuzzy rules of the digital state space
system are as follows :

Digital fel
Rule 1: IF v¢, is M,( v¢)),
THEN x, (kT +T,)=F x,(kT,) + Gu, (kT,)
Rule 2: IF v¢, is M,( v)),
THEN x, (kT +T,)=Fyx,;(kT,)+ G,u, (kT,)
Digital | law ‘

Rule 1 : IF v, is M;(ve;)) THEN u, (KT, )= —K,’, x, (kT,)
Rule 2 : IF v, is My(ve) THEN u, (kT,)==K]x,(kT,)
where F=e*" |, G=(F~1,)A"'B, T, =NT (T,: slow-
sampling rate, T : fast-sampling rate, N : sampling period),

and K! , K 2 are determined by (40).
d d

Case 1: g(v_,) = piecewise-linear
Choose the parameter as the followings :

R=1439, Ry=0, C, =01, C,=2, L=0.143,

G,=-0.1, G,=-4, E=075 d=15

Fig. 4 shows the response of Chua’s circuit with a

piecewise-linear resistor. The initial condition is {0 1 0] and
the hybrid state space self-tuning fuzzy control method is
activated at t=250. In Fig. 5, the strange attractor illustrates
the limiting property of the Chua’s circuit with piecewise
linear characteristic. It shows the phase plane trajectory of the
Chua’s circuit to control.

Fig. 4 Response of Chua’s circuit (case 1)
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ve2
°

Vel

Fig. 5 State space trajectory of the Chua’s circuit (case 1)

Case 2 : g(v,,) = cubic
Choose the parameter as the followings :

R=1439, R;=0, C,=10, C,=95,

L=1357, a=-08, ¢c=0.044, d=3

Fig. 6 shows the response of Chua’s circuit with cubic

characteristic. The initial condition is [-1 0.8 1] and the
hybrid state space self-tuning fuzzy control method is
activated at t=400. Fig. 7 illustrates the phase plane trajectory
of the Chua’s circuit to control

50 100 10 200 250 300 360 400 450 500
time(sec)

Fig. 6 Response of Chua’s circuit (case 2)

Fig. 7 State space trajectory of the Chua’s circuit (case 2)

5.Discussion

The digital redesign scheme together with fuzzy inference
systems is proposed in this paper. The fuzzy inference
systems are used to get the discrete-time state-space model
and control the applied force. This scheme has advantages of

the adaptive and robust results. By the application to Chua’s
circuit, the performance of the proposed scheme is better than
the conventional digital redesign schemes in the viewpoint of
thre computational efforts and performance. This scheme will
be applied to the control based digital systems.
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