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Abstract

Chaotic dynamics is an active research area in fields such as biology, physics, sociology,
psychology, physiology, and engineering. Interest in chaos is also expanding to the social
sciences, such as politics, economics, and societal events prediction. Most people pursue
happiness, both spiritual and physical in many cases. However, happiness is not easy to define,
because people differ in how they perceive it. Happiness can exist in mind and body. Therefore,
we need to be happy in both simultaneously to achieve optimal happiness. To do this, we need
to synchronize mind and body. In this paper, we propose a chaotic synchronization method in
a mathematical model of happiness organized by a second-order ordinary differential equation
with external force. This proposed mathematical happiness equation is similar to Duffing’s
equation, because it is derived from that equation. We introduce synchronization method
from our mathematical happiness model by using the derived Duffing equation. To achieve
chaotic synchronization between the human mind and body, we apply an idea of mind/body
unity originating in Oriental philosophy. Of many chaotic synchronization methods, we use
only coupled synchronization, because this method is closest to representing mind/body unity.
Typically, coupled synchronization can be applied only to non-autonomous systems, such as a
modified Duffing system. We represent the result of synchronization using a differential time
series mind/body model.
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1. Introduction

In the last two decades, chaotic dynamics has been used widely in real-world applications,
such as biological systems [1], brain modeling [2], weather modeling [3], vibration modeling
[4], mechanical and electrical engineering [5, 6], control and synchronization [7-11], robotics
[12, 13], and others [14-18]. Currently, it is also being studied by many researchers in
biology, physics, sociology, psychology, physiology, and engineering. However, this research
is not limited to the natural sciences, but is spreading to the social sciences, such as politics,
economics, and the prediction of societal events such as happiness and addiction [14, 19].

Most people pursue happiness. However, happiness is not easy to define, because people
differ in how they perceive it. Research in mathematical models of happiness has been
conducted by many researchers including physicists, psychologists, engineers, physiologists,
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Figure 1. Duffing system.

and mathematicians. Many mathematical models of happiness
have been introduced [15-17]. Sprott [15] proposed dynamical
models of happiness in 2004 and in 2005. He described a simple
linear model, a lottery-winning model, a drug or other addic-
tion model, and an anticipation model for arousing happiness.
Sinha et al.[14] proposed a dynamics of love and happiness and
discussed the stability of their proposed model.

In this paper, we propose a chaotic synchronization method
in a mathematical model of happiness organized by a second-
order ordinary differential equation with external force. This
proposed mathematical happiness equation is similar to Duff-
ing’s equation, as shown in Figure 1, because it is derived from
that equation. We introduce our mathematical happiness model
by using the derived Duffing equation, and then we demonstrate
chaotic phenomena from the happiness model using a time se-
ries and phase portrait. We assume that the happiness model is
divided into two parts, spiritual and physical.

To achieve chaotic synchronization between the human mind
and body, we apply an idea of mind/body unity originating in
Oriental philosophy. Of many chaotic synchronization methods
[5-8], such as coupled, driven, coupled driven, phase, com-
pleted, and generalized synchronization, we use only coupled
synchronization, because this method is closest to representing
mind/body unity. Typically, coupled synchronization can be
applied only to non-autonomous systems, such as a modified
Duffing system. We represent the result of synchronization
using a differential time series mind/body model.

2. Dynamical Happiness Model

The mathematical happiness models proposed by Sprott [15]
in 2005 include simple linear, lottery-winning, drug and other
addiction, real-life, nonlinear effect, and anticipation models.

The formulation of happiness is given by Eq. (1).

dx2(t)

dt2
+ β

dx(t)

dt
+ ω2x(t) = F (t) (1)

where β is the damping (rate of decay), ω is the natural resonant
frequency of oscillation in radians per unit time, and F (t) is
an external power. Without loss of generality, we can assume
ω = 1. Because ω = 2πf , we can measure time in units of 1

ω .

However, Eq. (1) does not provide an exact definition of a
dynamical happiness model for each parameter. To describe
exact variables in such a model, we must define the parameter
that relates happiness and perception. This is similar to cur-
rent

(
i = dq

dt

)
in an electrical RLC series circuit and velocity(

v = dx
dt

)
in a mechanical spring-damper-mass system. Hence,

we can apply those ideas in our dynamical happiness model to
derive a new formula.

In this paper, we define happiness (H) as the amount of
perception variation (dp) per amount of time variation (dt), as
in Eq. (2).

H =
dp

dt
[n/s] (2)

where n is the amount of perception. Eq. (2) is equivalent to
velocity in a spring-damper-mass model of a mechanical system.
Perception in Eq. (2) includes human behavior, habituation,
acclimation, and recognition adaption.

We define happiness (H) based on Eq. (2) to describe Eq.
(3).

Fc(t) = cp(t)

Fd(t) = d
dp(t)

dt

Fs(t) = s

∫
p(t)dt

(3)

where c, d, and s represent control, desire and sense coefficients,
respectively.

The control coefficient (c) represents the fact that when hu-
mans feel happy, the sense coefficient naturally reduces with
passing time. If this value is zero, there is no other response,
because the simple harmonic motion continues forever with the
number of vibrations, 1

2π

√
s
d . This situation is identical to the

phenomenon of a frictionless mechanical system. Of course, if
the value of the control coefficient is sufficiently large, there is
no variation in feeling. If the control coefficient has a reason-
able or small value, a human being can have feeling for a long
time.

The desire coefficient represents a criterion of human desire.
It is related to will and gratitude, which are person-dependent.
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If this value is sufficiently high, people tend to feel happy about
minor things. As a result, their happiness will continue for
a long time. The sense coefficients that represent the feeling
of happiness differ greatly from person to person owing to
differences in perceptivity.

In this paper, as vibrations result from the exchange of energy
between the motion energy of a mass and the position energy
of a spring in a spring-damper-mass system, we handle the
occurrence of physical and mental fluctuation in terms of an
exchange of energy or consciousness between the desire and
sense coefficients in our dynamical happiness model.

With that theoretical background, we can finally derive a
second-order equation for happiness with three independent
parameters, the control, desire, and sense coefficients. This
equation is given by (4).

d
dp2(t)

dt2
+ c

dp(t)

dt
+ sp(t) + βp(t)3 = F (t) (4)

where, F (t)is the power being applied externally. This external
power is the cause of a happiness event. Examples may include
periodic administration of medication or drugs, winning the
lottery, or periodic gaming. In real life, it may be provided in
the form of a sine or Gaussian wave. Periodic external power
can be written as in Eq. (5).

F (t) = A sinωt (5)

From Eq. (4), we obtain a time series and phase portrait, as
shown in Figures 2(a) and (b), respectively.

3. Chaotic synchronization between mind and
body using linear couplings

In this section, we establish a chaotic synchronization technique
between mind and body in human beings using an Oriental
philosophical idea of mind/body unity. To achieve mind/body
synchronization, we assume that mind and body each has a
chaotic model, such as a Duffing equation similar to Eq. (4).
Figure 3 shows a human mind/body synchronization device.

From Figure 3, we can distinguish three synchronization
methods, linearly coupled, driven, and coupled-driven. How-
ever, in this paper, because we consider only non-autonomous
systems, the modified Duffing type, we need apply only linearly
coupled synchronization. Because driven and coupled-driven
synchronization can be used only with autonomous systems,
we do not consider applying them to a modified Duffing type.
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(a) Time series of happiness model from (4), when d = 2, c = 0.40,
s = 1.0, A = 0.4135, ω = 1.
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(b) Phase portrait of happiness model from (4), when d = 2, c = 0.40,
s = 1.0, A = 0.4135, ω = 1.

Figure 2. Time series and phase portrait of happiness model form Eq.
(4).
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Figure 3. Synchronization device.
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(a) Time series of mind as master (x1), when k = 0.10. (b) Time series of mind as master (y1), when k = 0.10.

(c) Phase plane of mind as master (x1, y1), when k = 0.10. (d) Time series of body as slave (x2), when k = 0.10.

(e) Time series of body as slave (y2), when k = 0.10. (f) Phase plane of body as slave (x2, y2), when k = 0.10.

(g) Difference of time series (x1 − x2), when k = 0.10. (h) Difference of time series (y1 − y2), when k = 0.10.

Figure 4. Result of synchronization between the mind and body using linear coupling when k = 0.10.

Linearly coupled synchronization in two identical systems
has been studied in several papers [20, 21]. It can be described

in general form by Eq. (6).

ẋ = f1(x)

ẏ = f2(y) +K(x− y)
(6)
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where x, y ∈ Rn, and K is a real nonnegative parameter.

The synchronization procedure is formulated to find K such
that y(t)→ x(t) for t→∞. This means that the solution y(t)
will be synchronized to the signal x(t).

To apply linear coupling to the human mind and body using
the Duffing equation, we must define identical master and slave
models as follows.

Master model

We assume that the master model is the mind model and that
it can be expressed using the Duffing Eq. (7).

ẋ = y

ẏ =
(−cy− sx− βx3 +A sinωt)

d
+ k(y− y′)

(7)

Slave model

We also assume that the slave model is the physical model
and that it can be expressed using the Duffing Eq. (8).

ẋ′ = y

ẏ′ =
(−cy− sx− βx3 +A sinωt)

d
+ k(y′ − y)

(8)

From Eqs. (7) and (8), we must find a stable solution for
k. To obtain a stable solution for k, we use the characteristic
Eqs. (7) and (8) and find a stable area using the Routh-Hurwitz
condition. We were able to get k > 0.10. In a human being, we
can think of k as representing breathing or meditation.

Because we assume that the master is the mind and the slave
is the body, the parts of this system can communicate with each
other by recognizing a human being. Finally, the mind and the
body can be synchronized through action recognition. For these
situations, we will call these the oneness of mind and body.

Figure 4 shows the results of mind/body synchronization,
when k = 0.10. Figures 4(a) and (b) display (x1, y1) of a time
series of the mind, respectively. Figure 4(c) represents (x1, y1)
of the phase portrait of the mind. Figures 4(d) and (e) show
x2, y2 of a time series of the body, respectively. Figure 4(e)
represents (x1, y2) of the phase portrait of the body. Figures 4(f)
and (g) show the results of synchronization as (x1 − x2) and
(y1 − y2) of the differences of the time series, respectively.

From Figure 4 we recognize that synchronization between
mind and body is not achieved completely. This means that
mind and body have not become one.

With the same condition, when we change to k = 0.40 and
k = 1.0, we get the synchronization results shown in Figures 5
and 6, respectively.

(a) Difference of time series (x1 − x2), when k = 0.40.

(b) Difference of time series (y1 − y2), when k = 0.40.

Figure 5. Result of synchronization between mind and body using
linear coupling when k = 0.40.

From Figures 5 and 6, we see that synchronization between
mind and body is achieved completely and is achieved more
rapidly and fully, when the value of k is greater than 0.10. This
means that mind and body have become one.

4. Conclusion

We proposed a chaotic synchronization method in a mathe-
matical happiness model organized by a second-order ordinary
differential equation with external force. This proposed mathe-
matical happiness equation is similar to a modified Duffing’s
equation and is derived directly from that equation. We ap-
plied linear coupling synchronization to the modified Duffing
equation to demonstrate the result of synchronization by de-
termining the feedback gain, k. Finally, we showed the result
of synchronization through a time series and phase portrait of
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(a) Difference of time series (x1 − x2), when k = 1.0.

(b) Difference of time series (y1 − y2), when k = 1.0.

Figure 6. Result of synchronization between mind and body using
linear coupling when k = 1.0.

master and the slave models, as well as the difference of the
two time series.
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