• Title/Summary/Keyword: X-Ring

Search Result 763, Processing Time 0.023 seconds

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.

Extensions of linearly McCoy rings

  • Cui, Jian;Chen, Jianlong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1501-1511
    • /
    • 2013
  • A ring R is called linearly McCoy if whenever linear polynomials $f(x)$, $g(x){\in}R[x]{\backslash}\{0\}$ satisfy $f(x)g(x)=0$, there exist nonzero elements $r,s{\in}R$ such that $f(x)r=sg(x)=0$. In this paper, extension properties of linearly McCoy rings are investigated. We prove that the polynomial ring over a linearly McCoy ring need not be linearly McCoy. It is shown that if there exists the classical right quotient ring Q of a ring R, then R is right linearly McCoy if and only if so is Q. Other basic extensions are also considered.

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

CHARACTERIZATIONS OF A KRULL RING R[X]

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.543-549
    • /
    • 2001
  • We show that R[X] is a Krull (Resp. factorial) ring if and only if R is a normal Krull (resp, factorial) ring with a finite number of minimal prime ideals if and only if R is a Krull (resp. factorial) ring with a finite number of minimal prime ideals and R(sub)M is an integral domain for every maximal ideal M of R. As a corollary, we have that if R[X] is a Krull (resp. factorial) ring and if D is a Krull (resp. factorial) overring of R, then D[X] is a Krull (resp. factorial) ring.

  • PDF

A Study on the Contact Stress Analysis for X-ring (X-ring의 접촉 응력 해석에 관한 연구)

  • Lee, Hyun-Seung;Lee, Young-Shin;Lee, Jung-Hyun;Chun, Byong-Sun;Baek, Joon-Ho;Kim, Suk-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.733-739
    • /
    • 2008
  • The X-ring is a elastomer with X-shaped cross-section used as a mechanical seal or gasket. Such a X-ring was equipped in a groove and compressed between two or more parts, acts as a seal on the interface. This study aims to detect contact stress and deformed shape of a X-shaped ring shell under various compressive contact conditions. A contact stress analysis was carried out by finite element analysis. The effect of compression rates and thickness design variable was analyzed. X-ring kept up the double seal until a compression rate of 20%. The maximum stresses of the X-ring was occurred at the top and bottom corner. The maximum contact stress of X-ring was rapidly increased according with the compression rate. The X-rings with thickness design variable from 1.3 mm to 1.5 mm had comparative low stress levels.

SOME REMARKS ON SKEW POLYNOMIAL RINGS OVER REDUCED RINGS

  • Kim, Hong-Kee
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.275-286
    • /
    • 2001
  • In this paper, a skew polynomial ring $R[x;\alpha]$ of a ring R with a monomorphism $\alpha$ are investigated as follows: For a reduced ring R, assume that $\alpha(P){\subseteq}P$ for any minimal prime ideal P in R. Then (i) $R[x;\alpha]$ is a reduced ring, (ii) a ring R is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring) if and only if the skew polynomial ring $R[x;\alpha]$ is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring).

  • PDF

QUASI-COMPLETENESS AND LOCALIZATIONS OF POLYNOMIAL DOMAINS: A CONJECTURE FROM "OPEN PROBLEMS IN COMMUTATIVE RING THEORY"

  • Farley, Jonathan David
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1613-1615
    • /
    • 2016
  • It is proved that $k[X_1,{\ldots},X_v ]$ localized at the ideal ($X_1,{\ldots},X_v$ ), where k is a field and $X_1,{\ldots},X_v$ indeterminates, is not weakly quasi-complete for $v{\geq}2$, thus proving a conjecture of D. D. Anderson and solving a problem from "Open Problems in Commutative Ring Theory" by Cahen, Fontana, Frisch, and Glaz.

WHEN IS C(X) AN EM-RING?

  • Abuosba, Emad;Atassi, Isaaf
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.17-29
    • /
    • 2022
  • A commutative ring with unity R is called an EM-ring if for any finitely generated ideal I there exist a in R and a finitely generated ideal J with Ann(J) = 0 and I = aJ. In this article it is proved that C(X) is an EM-ring if and only if for each U ∈ Coz (X), and each g ∈ C* (U) there is V ∈ Coz (X) such that U ⊆ V, ${\bar{V}}=X$, and g is continuously extendable on V. Such a space is called an EM-space. It is shown that EM-spaces include a large class of spaces as F-spaces and cozero complemented spaces. It is proved among other results that X is an EM-space if and only if the Stone-Čech compactification of X is.

THE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RING

  • LIM, JUNG WOOK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.617-622
    • /
    • 2021
  • Let R be a commutative ring with identity, R[X] the polynomial ring over R and S a multiplicative subset of R. Let U = {f ∈ R[X] | f is monic} and let N = {f ∈ R[X] | c(f) = R}. In this paper, we show that if S is an anti-Archimedean subset of R, then R is an S-Noetherian ring if and only if R[X]U is an S-Noetherian ring, if and only if R[X]N is an S-Noetherian ring. We also prove that if R is an integral domain and R[X]U is an S-principal ideal domain, then R is an S-principal ideal domain.

Some Extensions of Rings with Noetherian Spectrum

  • Park, Min Ji;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.487-494
    • /
    • 2021
  • In this paper, we study rings with Noetherian spectrum, rings with locally Noetherian spectrum and rings with t-locally Noetherian spectrum in terms of the polynomial ring, the Serre's conjecture ring, the Nagata ring and the t-Nagata ring. In fact, we show that a commutative ring R with identity has Noetherian spectrum if and only if the Serre's conjecture ring R[X]U has Noetherian spectrum, if and only if the Nagata ring R[X]N has Noetherian spectrum. We also prove that an integral domain D has locally Noetherian spectrum if and only if the Nagata ring D[X]N has locally Noetherian spectrum. Finally, we show that an integral domain D has t-locally Noetherian spectrum if and only if the polynomial ring D[X] has t-locally Noetherian spectrum, if and only if the t-Nagata ring $D[X]_{N_v}$ has (t-)locally Noetherian spectrum.