Bull. Korean Math. Soc. **53** (2016), No. 6, pp. 1613–1615 http://dx.doi.org/10.4134/BKMS.b140895 pISSN: 1015-8634 / eISSN: 2234-3016

QUASI-COMPLETENESS AND LOCALIZATIONS OF POLYNOMIAL DOMAINS: A CONJECTURE FROM "OPEN PROBLEMS IN COMMUTATIVE RING THEORY"

JONATHAN DAVID FARLEY

ABSTRACT. It is proved that $k[X_1, \ldots, X_v]$ localized at the ideal (X_1, \ldots, X_v) , where k is a field and X_1, \ldots, X_v indeterminates, is not weakly quasi-complete for $v \ge 2$, thus proving a conjecture of D. D. Anderson and solving a problem from "Open Problems in Commutative Ring Theory" by Cahen, Fontana, Frisch, and Glaz.

Our rings are commutative with multiplicative identity. We use terminology from [4] and [5].

Let R be a Noetherian local ring with maximal ideal M. The ring is (weakly) quasi-complete if, for any decreasing subsequence $\{I_n\}_{n=1}^{\infty}$ of ideals of R (such that $\bigcap_{n=1}^{\infty} I_n = \{0\}$) and any $k \geq 1$, there exists $m \geq 1$ such that $I_m \subseteq \bigcap_{n=1}^{\infty} I_n + M^k$.

In the chapter "Open Problems in Commutative Ring Theory" by Cahen, Fontana, Frisch, and Glaz of the Springer Verlag volume *Commutative Algebra: Recent advances in commutative rings, integer-valued polynomials, and polynomial functions* edited by Fontana, Frisch, and Glaz appears the following.

Problem ([2, Problem 8b]). Let k be a field and let R be the localization of $k[X_1, \ldots, X_v]$ at the ideal generated by the $v \ge 2$ indeterminates X_1, \ldots, X_v . Is R (weakly) quasi-complete?

Daniel D. Anderson conjectures that the answer is "no" [1, Conjecture 1] and proves that the answer is "no" if k is countable. His proof depends on the following.

Proposition 1 ([1, Corollary 2, Part 1]). A Noetherian local integral domain R is weakly quasi-complete if and only if $P \cap R \neq \{0\}$ for each non-zero prime ideal P of \hat{R} , the completion of R.

O2016Korean Mathematical Society

1613

Received November 14, 2014.

²⁰¹⁰ Mathematics Subject Classification. 13A15, 13B30, 13B35, 13E05, 16P40, 16P50, 16S85.

Key words and phrases. quasi-completeness, Noetherian ring, commutative ring, polynomial ring, localization, ring of formal power series, completion.

The author would like to thank student of Kaplansky and fellow lattice-theory enthusiast Dr. D. D. Anderson for providing a preprint of his paper.

Lemma 2 ([1, Example 1]). Let K be a countable field and let $v \ge 2$. Then there exists a non-zero prime ideal P of the ring of formal power series $K[[X_1, ..., X_v]]$ such that $P \cap K[X_1, ..., X_v] = \{0\}$.

We solve the above problem by proving the following.

Theorem 3. Let k be a field and let $v \ge 2$. Then there exists a non-zero prime ideal Q of $k[[X_1, \ldots, X_v]]$ such that $Q \cap k[X_1, \ldots, X_v] = \{0\}$.

Proof. For notational simplicity, we set v = 2 and use indeterminates X and Y. Let P be the ideal of the lemma when K is the prime subfield of k. Pick $f \in P \setminus \{0\}$. Let B be a basis of the vector space k over K.

Let $g \in k[[X, Y]]$. For $m, n \ge 0$, the coefficient of $X^m Y^n$ in g is $\sum_{b \in B} z_b^{m,n} b$, where for fixed m and n almost all $z_b^{m,n} \in K$ are 0, and in f it is $a^{m,n} \in K$; in fg it is

$$\sum_{\substack{b \in B \\ \text{such that } r+r'=m \text{ and } s+s'=n}} \sum_{\substack{r,s,r',s' \ge 0 \\ s = n}} a^{r,s} z_b^{r',s'} b.$$

If $fg \in k[X,Y]$, then there exists $N \ge 0$ such that for all $m, n \ge 0$ with m+n > N we have

$$\sum_{b \in B} \sum_{\substack{r,s,r',s' \ge 0\\ \text{such that } r+r'=m \text{ and } s+s'=n}} a^{r,s} z_b^{r',s'} b = 0$$

which means that for all $b \in B$

S110

$$\sum_{\substack{r,s,r',s' \geq 0\\ \text{ch that } r+r'=m \text{ and } s+s'=n}} a^{r,s} z_b^{r',s'} = 0.$$

If $fg \neq 0$, then there exist $\bar{m}, \bar{n} \geq 0$ such that the coefficient of $X^{\bar{m}}Y^{\bar{n}}$ is non-zero, i.e.,

$$\sum_{\substack{b \in B \\ \text{such that } r+r' = \bar{m} \text{ and } s+s' = \bar{n}}} a^{r,s} z_b^{r',s'} b \neq 0,$$

so there exists $\bar{b} \in B$ such that

$$\sum_{\substack{r,s,r',s'\geq 0\\ \text{such that }r+r'=\bar{m} \text{ and }s+s'=\bar{n}}}a^{r,s}z_{\bar{b}}^{r',s'}\neq 0.$$

Letting $\bar{g} \in K[[X, Y]]$ have $z_{\bar{b}}^{m,n}$ as the coefficient of $X^m Y^n$ for $m, n \ge 0$, we see that $f\bar{g}$ is a non-zero element of K[X, Y], so $P \cap K[X, Y] \ne \{0\}$, a contradiction. Thus we have proven.

Claim 1. If \overline{P} is the principal ideal generated by f in k[[X,Y]], then $\overline{P} \cap k[X,Y] = \{0\}$.

Claim 2. The ideal \overline{P} is proper.

1614

Proof. If $1 \in \overline{P}$, then f would be a unit in k[[X, Y]], and hence $a^{0,0} \neq 0$ [5, 1.43]; but then f would be a unit in K[[X, Y]], so P would be improper, a contradiction.

Since k[[X, Y]] is Noetherian [5, 8.14], by Claim 2 \overline{P} has a primary decomposition $\overline{P} = Q_1 \cap \cdots \cap Q_t$ for some $t \ge 1$ [5, 4.35]. Hence $\sqrt{\overline{P}} = P_1 \cap \cdots \cap P_t$ for prime ideals P_1, \ldots, P_t of k[[X, Y]] [5, 2.30, 4.5].

Claim 3. The intersection $\sqrt{\overline{P}} \cap k[X, Y]$ equals $\{0\}$.

Proof. If there exists a non-zero $g \in k[X, Y]$ such that $g^r \in \overline{P}$ for some $r \ge 1$, then $g^r \in (\overline{P} \cap k[X, Y]) \setminus \{0\}$, contradicting Claim 1.

Claim 4. For some $i \in \{1, ..., t\}, P_i \cap k[X, Y] = \{0\}.$

Proof. Assume for a contradiction that for all $i \in \{1, \ldots, t\}$, there exists $g_i \in (P_i \cap k[X, Y]) \setminus \{0\}$. Then $0 \neq g_1 \cdots g_t \in P_1 \cap \cdots \cap P_t \cap k[X, Y] = \sqrt{\overline{P}} \cap k[X, Y]$, contradicting Claim 3.

Let $Q := P_i$ to prove the theorem.

Corollary 4. Let k be a field, R the localization of $k[X_1, \ldots, X_v]$ at the ideal (X_1, \ldots, X_v) where $v \ge 2$. Then R is not weakly quasi-complete.

References

- D. D. Anderson, Quasi-complete semilocal rings and modules, In Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer Verlag, New York, 2014.
- [2] P.-J. Cahen, M. Fontana, S. Frisch, and S. Glaz, Open Problems in Commutative Ring Theory, In Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer Verlag, New York, 2014.
- [3] M. Fontana, S. Frisch, and S. Glaz, Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer Verlag, New York, 2014.
- [4] D. G. Northcott, Ideal Theory, Cambridge University Press, Cambridge, 1953.
- [5] R. Y. Sharp, Steps in Commutative Algebra, second edition, Cambridge University Press, Cambridge, 2000.

JONATHAN DAVID FARLEY DEPARTMENT OF MATHEMATICS MORGAN STATE UNIVERSITY 1700 E. COLD SPRING LANE BALTIMORE, MARYLAND 21251, USA *E-mail address*: lattice.theory@gmail.com