QUASI-COMPLETENESS AND LOCALIZATIONS OF POLYNOMIAL DOMAINS: A CONJECTURE FROM "OPEN PROBLEMS IN COMMUTATIVE RING THEORY"

Jonathan David Farley

Abstract

It is proved that $k\left[X_{1}, \ldots, X_{v}\right]$ localized at the ideal $\left(X_{1}, \ldots\right.$, X_{v}), where k is a field and X_{1}, \ldots, X_{v} indeterminates, is not weakly quasi-complete for $v \geq 2$, thus proving a conjecture of D. D. Anderson and solving a problem from "Open Problems in Commutative Ring Theory" by Cahen, Fontana, Frisch, and Glaz.

Our rings are commutative with multiplicative identity. We use terminology from [4] and [5].

Let R be a Noetherian local ring with maximal ideal M. The ring is (weakly) quasi-complete if, for any decreasing subsequence $\left\{I_{n}\right\}_{n=1}^{\infty}$ of ideals of R (such that $\left.\bigcap_{n=1}^{\infty} I_{n}=\{0\}\right)$ and any $k \geq 1$, there exists $m \geq 1$ such that $I_{m} \subseteq$ $\bigcap_{n=1}^{\infty} I_{n}+M^{k}$.

In the chapter "Open Problems in Commutative Ring Theory" by Cahen, Fontana, Frisch, and Glaz of the Springer Verlag volume Commutative Algebra: Recent advances in commutative rings, integer-valued polynomials, and polynomial functions edited by Fontana, Frisch, and Glaz appears the following.
Problem ([2, Problem 8b]). Let k be a field and let R be the localization of $k\left[X_{1}, \ldots, X_{v}\right]$ at the ideal generated by the $v \geq 2$ indeterminates X_{1}, \ldots, X_{v}. Is R (weakly) quasi-complete?

Daniel D. Anderson conjectures that the answer is "no" [1, Conjecture 1] and proves that the answer is "no" if k is countable. His proof depends on the following.
Proposition 1 ([1, Corollary 2, Part 1]). A Noetherian local integral domain R is weakly quasi-complete if and only if $P \cap R \neq\{0\}$ for each non-zero prime ideal P of \hat{R}, the completion of R.

[^0]Lemma 2 ([1, Example 1]). Let K be a countable field and let $v \geq 2$. Then there exists a non-zero prime ideal P of the ring of formal power series $K\left[\left[X_{1}\right.\right.$, $\left.\left.\ldots, X_{v}\right]\right]$ such that $P \cap K\left[X_{1}, \ldots, X_{v}\right]=\{0\}$.

We solve the above problem by proving the following.
Theorem 3. Let k be a field and let $v \geq 2$. Then there exists a non-zero prime ideal Q of $k\left[\left[X_{1}, \ldots, X_{v}\right]\right]$ such that $Q \cap k\left[X_{1}, \ldots, X_{v}\right]=\{0\}$.

Proof. For notational simplicity, we set $v=2$ and use indeterminates X and Y. Let P be the ideal of the lemma when K is the prime subfield of k. Pick $f \in P \backslash\{0\}$. Let B be a basis of the vector space k over K.

Let $g \in k[[X, Y]]$. For $m, n \geq 0$, the coefficient of $X^{m} Y^{n}$ in g is $\sum_{b \in B} z_{b}^{m, n} b$, where for fixed m and n almost all $z_{b}^{m, n} \in K$ are 0 , and in f it is $a^{m, n} \in K$; in $f g$ it is

$$
\sum_{b \in B} \sum_{\substack{r, s, r^{\prime}, s^{\prime} \geq 0 \\ \text { such that } r+r^{\prime}=m \text { and } s+s^{\prime}=n}} a^{r, s} z_{b}^{r^{\prime}, s^{\prime}} b .
$$

If $f g \in k[X, Y]$, then there exists $N \geq 0$ such that for all $m, n \geq 0$ with $m+n>N$ we have

$$
\sum_{b \in B} \sum_{\substack{r, s, r^{\prime}, s^{\prime} \geq 0 \\ \text { such that } r+r^{\prime}=m \text { and } s+s^{\prime}=n}} a^{r, s} z_{b}^{r^{\prime}, s^{\prime}} b=0
$$

which means that for all $b \in B$

$$
\sum_{\substack{r, s, r^{\prime}, s^{\prime} \geq 0 \\ r+r^{\prime}=m \text { and } s+s^{\prime}=n}} a^{r, s} z_{b}^{r^{\prime}, s^{\prime}}=0
$$

If $f g \neq 0$, then there exist $\bar{m}, \bar{n} \geq 0$ such that the coefficient of $X^{\bar{m}} Y^{\bar{n}}$ is non-zero, i.e.,

$$
\sum_{b \in B} \sum_{\substack{r, s, r^{\prime}, s^{\prime} \geq 0 \\ \text { such that } r+r^{\prime}=\bar{m} \text { and } s+s^{\prime}=\bar{n}}} a^{r, s} z_{b}^{r^{\prime}, s^{\prime}} b \neq 0
$$

so there exists $\bar{b} \in B$ such that

$$
\sum_{\substack{r, s, r^{\prime}, s^{\prime} \geq 0 \\ r+r^{\prime}=\bar{m} \text { and } s+s^{\prime}=\bar{n}}} a^{r, s} z_{\bar{b}}^{r^{\prime}, s^{\prime}} \neq 0
$$

Letting $\bar{g} \in K[[X, Y]]$ have $z_{\bar{b}}^{m, n}$ as the coefficient of $X^{m} Y^{n}$ for $m, n \geq 0$, we see that $f \bar{g}$ is a non-zero element of $K[X, Y]$, so $P \cap K[X, Y] \neq\{0\}$, a contradiction. Thus we have proven.

Claim 1. If \bar{P} is the principal ideal generated by f in $k[[X, Y]]$, then $\bar{P} \cap$ $k[X, Y]=\{0\}$.

Claim 2. The ideal \bar{P} is proper.

Proof. If $1 \in \bar{P}$, then f would be a unit in $k[[X, Y]]$, and hence $a^{0,0} \neq 0[5$, 1.43]; but then f would be a unit in $K[[X, Y]]$, so P would be improper, a contradiction.

Since $k[[X, Y]]$ is Noetherian $[5,8.14]$, by Claim $2 \bar{P}$ has a primary decomposition $\bar{P}=Q_{1} \cap \cdots \cap Q_{t}$ for some $t \geq 1[5,4.35]$. Hence $\sqrt{\bar{P}}=P_{1} \cap \cdots \cap P_{t}$ for prime ideals P_{1}, \ldots, P_{t} of $k[[X, Y]][5,2.30,4.5]$.

Claim 3. The intersection $\sqrt{\bar{P}} \cap k[X, Y]$ equals $\{0\}$.
Proof. If there exists a non-zero $g \in k[X, Y]$ such that $g^{r} \in \bar{P}$ for some $r \geq 1$, then $g^{r} \in(\bar{P} \cap k[X, Y]) \backslash\{0\}$, contradicting Claim 1.
Claim 4. For some $i \in\{1, \ldots, t\}, P_{i} \cap k[X, Y]=\{0\}$.
Proof. Assume for a contradiction that for all $i \in\{1, \ldots, t\}$, there exists $g_{i} \in$ $\left(P_{i} \cap k[X, Y]\right) \backslash\{0\}$. Then $0 \neq g_{1} \cdots g_{t} \in P_{1} \cap \cdots \cap P_{t} \cap k[X, Y]=\sqrt{\bar{P}} \cap k[X, Y]$, contradicting Claim 3.

Let $Q:=P_{i}$ to prove the theorem.
Corollary 4. Let k be a field, R the localization of $k\left[X_{1}, \ldots, X_{v}\right]$ at the ideal $\left(X_{1}, \ldots, X_{v}\right)$ where $v \geq 2$. Then R is not weakly quasi-complete.

References

[1] D. D. Anderson, Quasi-complete semilocal rings and modules, In Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer Verlag, New York, 2014.
[2] P.-J. Cahen, M. Fontana, S. Frisch, and S. Glaz, Open Problems in Commutative Ring Theory, In Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer Verlag, New York, 2014.
[3] M. Fontana, S. Frisch, and S. Glaz, Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer Verlag, New York, 2014.
[4] D. G. Northcott, Ideal Theory, Cambridge University Press, Cambridge, 1953.
[5] R. Y. Sharp, Steps in Commutative Algebra, second edition, Cambridge University Press, Cambridge, 2000.

Jonathan David Farley
Department of Mathematics
Morgan State University 1700 E. Cold Spring Lane Baltimore, Maryland 21251, USA
E-mail address: lattice.theory@gmail.com

[^0]: Received November 14, 2014.
 2010 Mathematics Subject Classification. 13A15, 13B30, 13B35, 13E05, 16P40, 16P50, 16 S 85.

 Key words and phrases. quasi-completeness, Noetherian ring, commutative ring, polynomial ring, localization, ring of formal power series, completion.

 The author would like to thank student of Kaplansky and fellow lattice-theory enthusiast Dr. D. D. Anderson for providing a preprint of his paper.

