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WHEN IS C(X) AN EM-RING?

Emad Abuosba and Isaaf Atassi

Abstract. A commutative ring with unity R is called an EM-ring if

for any finitely generated ideal I there exist a in R and a finitely gener-

ated ideal J with Ann(J) = 0 and I = aJ . In this article it is proved
that C(X) is an EM-ring if and only if for each U ∈ Coz (X), and each

g ∈ C∗ (U) there is V ∈ Coz (X) such that U ⊆ V , V = X, and g is

continuously extendable on V . Such a space is called an EM-space. It

is shown that EM-spaces include a large class of spaces as F-spaces and
cozero complemented spaces. It is proved among other results that X is

an EM-space if and only if the Stone-Čech compactification of X is.

1. Introduction

Let X be a topological space, C(X) be the ring of all continuous real valued
functions defined on X and C∗(X) be its subring of bounded functions. For

each f ∈ C(X), let Z(f) = f−1(0), coz(f) = X − Z(f) and supp(f) = coz(f).
Let Z(X) be the set of all zero sets in X and Coz(X) be the set of all cozero
sets in X. For any undefined terms, the reader may refer to [9], and for a new
survey and results on C(X), see [4].

If X is any topological space, then there is a Tychonoff space Y such that
C(X) is isomorphic to C(Y ). Thus we will assume that all spaces X are
Tychonoff spaces, and so we are able to extend X into the Stone-Čech com-
pactification βX.

A lot of work is done in the literature to characterize algebraic properties
of C(X) using the topological properties of X and viceversa. In the following
some of these characterizations that will be used in this article.

A space X is called basically disconnected if for each f ∈ C(X), supp(f)
is open. It is known that X is basically disconnected if and only if C(X) is a
PP-ring (every principal ideal is projective), see [5].
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A space X is called an F-space if for each f ∈ C(X), coz(f) is C*-embedded
in X. It is known that X is an F-space if and only if C(X) is a Bezout ring
(every finitely generated ideal is principal) if and only if C(X) is a PF-ring
(every principal ideal is flat), see [8, 9].

A space X is called cozero complemented if and only if for each U ∈ Coz(X)
there exists V ∈ Coz(X) such that U∩V = ∅ and U ∪ V = X. It is known that
X is cozero complemented if and only if Min(C(X)) (the space of all minimal
prime ideals in C(X) with the Zariski topology) is compact, see [12].

Let R be a commutative ring. In [1], the authors introduced the notion of an
annihilating content for a polynomial: if f(x) ∈ R[x] and there exist a ∈ R and
a regular (non-zero divisor) polynomial g(x) ∈ R[x] such that f(x) = ag(x),
then a is called an annihilating content for f(x). Annihilating content simplifies
computing the annihilator of a polynomial, which is not always an easy task,
also it is used to find the annihilator of a finitely generated ideal. In [2], the
authors defined EM-rings as those rings for which any polynomial in R[x] has
an annihilating content. Among other things it was shown that a Bezout ring is
an EM-ring, the class of EM-rings is closed under localization, direct products,
polynomial adjunction and that a Noetherian ring is an EM-ring if and only if
each minimal prime ideal is principal. More investigation was done in [3], and
it was proved that R is an EM-ring if and only if for each finitely generated
ideal I of R, there exist a ∈ R and a finitely generated ideal J of R such that
I = aJ and Ann(J) = 0.

In [7], the authors proved that a ring R is a PP-ring if and only if R(+)R
is an EM-ring if and only if R(+)R is a generalized morphic ring (for each
f ∈ R, Ann(f) = {g ∈ R : fg = 0} is principal). They also showed in [2] that
a Noetherian ring is an EM-ring if and only if it is a generalized morphic ring,
however they showed that if X = βN − N, then C(X) is an EM-ring that is
not generalized morphic. This motivated us to study EM-rings and generalized
morphic rings in C(X).

The purpose of this article is to characterize those topological spaces X for
which C(X) is an EM-ring or a generalized morphic ring. Although we don’t
know yet the exact relation between EM-rings and generalized morphic rings,
but we manage to show that if C(X) is generalized morphic, then indeed it is
an EM-ring.

In Section 2, we study the annihilating content of a finitely generated ideal in
C(X) and simplify some of its computations. It is shown (Theorem 2.3) that
the finitely generated ideal I = (f1, f2, . . . , fn) of C(X) has an annihilating
content h ∈ C (X) if and only if there exist g1, . . . , gn+1 ∈ C(X) such that

fi = hgi for 1 ≤ i ≤ n and 0 = hgn+1 with
⋃n+1
i=1 supp(gi) = X. Also it is

shown (Theorem 2.4) that we can pick the annihilating content h (which is not
unique) to be bounded.

In Section 3, we define EM-spaces as follows: X is an EM-space if and only
if C(X) is an EM-ring. It is shown that the set of all real numbers with the
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Euclidean topology is an EM-space, while the one-point compactification of an
uncountable discrete space is not. It is shown (Corollary 3.9) that X is an EM-
space if and only if βX is. Theorem 3.11 characterizes Tychonoff EM-spaces:
a Tychonoff space X is an EM-space if and only if for each U ∈ Coz (X), and
each g ∈ C∗ (U) there is V ∈ Coz (X) such that U ⊆ V , V = X, and g is
continuously extendable on V .

In Section 4, we relate EM-spaces with other spaces. We observe that the
ring C(X) is generalized morphic if and only if X is basically disconnected, and
so if C(X) is generalized morphic, then it is an EM-ring. It is shown that EM-
spaces include wide range of spaces such as F-spaces and cozero complemented
spaces (Theorem 4.1). It is also deduced that a quazi F-space EM-space is
an F-space. Finally it is shown that a locally connected EM-space is cozero
complemented.

2. Annihilating content

The idea of an annihilating content was first defined in [1] to factor a polyno-
mial into an element in the ring multiplied by a regular polynomial to simplify
calculating the zero divisor graph of the polynomial ring R[x]. In this section
we use topological characterization for the annihilating content in C(X).

Definition 2.1. Let R be a commutative ring and let f(x) ∈ R[x]. If there
exist a ∈ R and a regular polynomial g(x) ∈ R[x] such that f(x) = ag(x), then
a is called an annihilating content for f(x).

The idea of annihilating content was more developed in [2] and [3] to be used
for finitely generated ideals of R.

Definition 2.2. Let R be a commutative ring with unity, and let I be a finitely
generated ideal of R such that there exist a ∈ R and a finitely generated ideal
J with Ann(J) = 0 and I = aJ . In this case a is called an annihilating content
for I.

It was shown in [3] that the annihilating content is not unique, and if a is an
annihilating content for f(x) (the finitely generated ideal I), then Ann(f(x)) =
Ann(a) (Ann(I) = Ann(a)), also if aR = bR, then b is an annihilating content
for f(x) (for I), but not conversely.

We now give the analogue definition of an annihilating content in the ring
C(X). But we recall first that for f, h ∈ C(X), supp(f) = supp(h) if and only
if Ann(f) = Ann(h) and that Ann(f) = 0 if and only if coz(f) is dense in X.

Theorem 2.3. In a Tychonoff space X, the finitely generated ideal I = (f1, f2,
. . . , fn) has an annihilating content h ∈ C (X) if and only if there exist g1, g2,
. . . , gn+1 ∈ C(X) such that

fi = hgi, i = 1, 2, . . . , n,
0 = hgn+1,



20 E. ABUOSBA AND I. ATASSI

n+1⋃
i=1

supp(gi) = X.

In this case, supp (h) =
⋃n
i=1 supp(fi).

Proof. Assume I = (f1, f2, . . . , fn) has an annihilating content. Then there
exist h, g1, g2, . . . , gn, g

′
n+1, . . . , g

′
m ∈ C(X) such that

fi = hgi, i = 1, 2, . . . , n,

0 = hg′i, i = n+ 1, . . .m,

Ann(g1, g2, . . . , gn, g
′
n+1, . . . , g

′
m) = 0.

Let gn+1 =
∑m
i=n+1 |g′i|. Then it is clear that hgn+1 = 0, and that Ann(g1, g2,

. . . , gn, gn+1) = 0, and so
⋃n+1
i=1 supp(gi) = X. The converse is straightforward.

Now to show that supp (h) =
⋃n
i=1 supp(fi), it is sufficient to show that

Ann (h) = Ann(f1, f2, . . . , fn). If αfi = 0 for each i, then (αh)gi = 0 for each
i, and so αh ∈ Ann(g1, g2, . . . , gm) = 0. Hence the result. �

In the following, we show that the annihilating content for an ideal in C(X),
if exists, can be chosen to be bounded.

Theorem 2.4. In a Tychonoff space X, if the finitely generated ideal I =
(f1, f2, . . . , fn) in C(X) has an annihilating content, then I has a bounded
annihilating content.

Proof. Let h0 ∈ C(X) be an annihilating content for I = (f1, f2, . . . , fn). Then
there exist g1, g2, . . . , gn+1 ∈ C(X) such that

fi = h0gi, i = 1, 2, . . . , n,

0 = h0gn+1,

n+1⋃
i=1

supp(gi) = X.

Let

q(x) =


−h0(x), x ∈ h−10 ((−∞,−1]) ,
1, x ∈ h−10 (−1, 1) ,
h0(x), x ∈ h−10 ([1,∞)).

Then q ∈ C (X). Since Z (q) = ∅ and
∣∣∣h0

q

∣∣∣ ≤ 1, we have h = h0

q ∈ C
∗ (X). If

g∗i = giq, then

hg∗i = hgiq = h0gi =

{
fi, i = 1, 2, . . . , n,
0, i = n+ 1.

Actually, for every i ∈ {1, 2, . . . , n+ 1}, supp(g∗i ) = supp(gi).

Therefore,
⋃n+1
i=1 supp(g∗i ) = X, and h is a bounded annihilating content for

I. �
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3. EM-spaces

In this section, we will give a topological characterization for EM-spaces,
give examples and counter examples, and show that X is an EM-space if and
only if βX is.

The idea of EM-rings was firstly defined in [2], then further investigations
were carried out in [3].

Definition 3.1. A commutative ring R is called an EM-ring if every polyno-
mial in R[x] has an annihilating content.

The following theorem can be found in [3], it gives more equivalent conditions
to EM-rings and simplifies computations.

Theorem 3.2. For a commutative ring R, the following are equivalent.
(1) R is an EM-ring.
(2) For a+ bx ∈ R[x], there exist an element c ∈ R and a regular polynomial

f1 ∈ R[x] with a+ bx = cf1.
(3) For a, b ∈ R, there are an element c ∈ R and a finitely generated ideal J

of R with (a, b) = cJ and Ann(J) = 0.

Now we define EM-spaces.

Definition 3.3. A Tychonoff spaces X is called an EM-space if C(X) is an
EM-ring.

In view of Definition 3.3, Theorem 2.3, and Theorem 3.2, we give a simple
formula for being an EM-space.

Corollary 3.4. A Tychonoff spaces X is an EM-space if and only if whenever
f1, f2 ∈ C (X), there exist h, g1, g2, g3 ∈ C (X) such that fi = hgi for i = 1, 2,

hg3 = 0, and
⋃3
i=1 supp (gi) = X.

Example 3.5. It is proved in [2] that any Bezout ring is an EM-ring, and it
is proved in [8] that C(X) is Bezout if and only if X is an F-space. Now we
give a direct proof that if X is an F-space, then X is an EM-space. For an
ideal I = (f1, f2) ⊆ C (X), take h = |f1| + |f2|, and let gi ∈ C (X) such that

gi|⋃
j=1,2 coz(fj) = fi

h for i = 1, 2, and g3 = 1 − |g1| − |g2|. Then fi = hgi for

i = 1, 2, hg3 = 0 and
⋃3
i=1 supp(gi) = X. This implies that h is an annihilating

content for I.

Example 3.6. Let R be the set of all real numbers with the Euclidean topology,
and let f1, f2 ∈ C(R). Define h = (|f1| + |f2|)

1
2 . It is clear that coz(h) =

coz(f1)
⋃

coz(f2). For i = 1, 2, define

αi(x) =

{
fi
h (x), x ∈ coz(h),

0, otherwise.

Then αi ∈ C(X), and fi = hαi for i = 1, 2. Now, define γ(x) = inf{|x− a| :
a ∈ supp(h)}. It is clear that hγ = 0, Z(γ) = supp(h), and coz(α1)∪ coz(α2)∪
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coz(γ) = coz(f1)∪coz(f2)∪coz(γ) = coz(h)∪coz(γ) is dense in R. Thus, C(R)
is an EM-ring.

In general if X is a metric space, then C(X) is an EM-ring.

One can wonder if for any Tychonoff space X, the ring C(X) is an EM-ring,
since if f1, f2 ∈ C(X), then using the same technique in the last example one
shows that (f1, f2) = h(α1, α2), but it is not always the case that we can find γ
satisfying supp(α1)∪ supp(α2)∪ supp(γ) = X with hγ = 0. This will be shown
in the following example.

Example 3.7. Let X = Y ∪ {∞} be the one-point compactification of an
uncountable discrete space. For i = 1, 2, take fi ∈ C (X) such that coz (fi) are
infinite disjoint countable sets. Suppose that h, gi ∈ C (X) for i = 1, 2, and
fi = hgi. Then coz (g1) ∩ coz (f2) = coz (g1) ∩ coz (h) ∩ coz (f2) = coz (f1) ∩
coz (f2) = ∅. But coz (f2) is infinite, so ∞ /∈ coz (g1). Hence, coz (g1) is
countable being an Fσ-set in X. Similar argument shows that coz (g2) is also
countable.

Let g be any function in C (X). If ∞ ∈ coz (g), then coz (g) ∩ coz (h) ⊇
coz (g) ∩ coz (f1) 6= ∅, because coz (f1) is infinite, and thus gh 6= 0.

If ∞ /∈ coz (g), then coz (g) is countable, and
⋃2
i=1 supp(gi) ∪ supp(g) =⋃2

i=1 coz(gi)∪ coz (g)∪ {∞} 6= X since the left hand side is countable, but the
right hand side is uncountable. Therefore, the ideal (f1, f2) does not have an
annihilating content, and so C(X) is not an EM-ring.

Theorem 3.8. Let X be a Tychonoff space. Then C∗ (X) is an EM-ring if
and only if C (X) is an EM-ring.

Proof. Let X be a space such that C∗ (X) is an EM-ring. Let f, g ∈ C (X),
and let f∗ = (f ∧ 1) ∨ (−1), and g∗ = (g ∧ 1) ∨ (−1). By assumption, there
exist h, α∗, β∗, γ ∈ C∗ (X), such that f∗ = hα∗, g∗ = hβ∗, 0 = hγ, and
supp (α∗) ∪ supp (β∗) ∪ supp (γ) = X. Consider

q1 (x) =

{ f
f∗ (x) , x ∈ f−1 ((−∞,−1] ∪ [1,∞)),

1, elsewhere,

q2 (x) =

{ g
g∗ (x) , x ∈ g−1 ((−∞,−1] ∪ [1,∞)),

1, elsewhere,

and let α = α∗q1, and β = β∗q2. Then αh = α∗q1h = f∗q1 = f , and βh =
β∗q2h = g∗q2 = g. Furthermore, 0 = hγ, and

supp (α) ∪ supp (β) ∪ supp (γ) = supp (α∗) ∪ supp (β∗) ∪ supp (γ) = X.

This implies that h is an annihilating content for (f, g), and C (X) is an EM-
ring.

Conversely, let C (X) be an EM-ring. Let f, g ∈ C∗ (X) ⊆ C (X). Then, by
assumption, and by Theorem 2.4, we can find h0 ∈ C∗ (X), and α0, β0, γ0 ∈
C (X) such that f = α0h0, g = β0h0, 0 = γ0h0, and supp (α0) ∪ supp (β0) ∪



WHEN IS C(X) AN EM-RING? 23

supp (γ0) = X. Evidently, there is a bound M > 0, with |f | , |g| , |h0| < M.
Take

γ = (γ0 ∧M) ∨ (−M)

and let α∗0 = (α0 ∧M) ∨ (−M). For A = α−10 ((−∞,−M ] ∪ [M,∞)), take

q1 (x) =

{ α0

α∗
0

(x), x ∈ A,

1, elsewhere,

and then let β1 = β0

q1
∈ C (X) since Z (q1) = ∅, and β = (β1 ∧M) ∨ (−M).

For B = β−11 ((−∞,−M ] ∪ [M,∞)), take

q2 (x) =

{ β1

β (x), x ∈ B,

1, elsewhere,

and then let α =
α∗

0

q2
∈ C(X), Z(q2) = ∅, and h = q1q2h0. In fact,

|α| =
∣∣∣∣α∗0q2

∣∣∣∣ =

{ ∣∣∣α∗
0β
β1

∣∣∣ ≤ |α∗0| ≤M on B,

|α∗0| ≤M on X −B,

|h| = |q1q2h0| =



|h0| ≤M on X − (A ∪B),∣∣∣α0

α∗
0
h0

∣∣∣ =
∣∣∣ fα∗

0

∣∣∣ = |f |
M ≤ 1 on A−B,∣∣∣β1h0

β

∣∣∣ =
∣∣∣β0h0

β

∣∣∣ =
∣∣∣ gβ ∣∣∣ = |g|

M ≤ 1 on B −A,∣∣∣α0β1h0

α∗
0β

∣∣∣ =
∣∣∣β0h0

β

∣∣∣ = |g|
M ≤ 1 on A ∩B.

By this we have |h| ≤ max {M, 1}, α, β, γ, h ∈ C∗ (X), and having same
support as α0, β0, γ0, h0, respectively, since q1, q2 are units.

Additionally,

αh = α∗0q1h0 = α0h0 = f,
βh = βq1q2h0 = β1q1h0 = β0h0 = g,

γh = 0,
supp (α) ∪ supp (β) ∪ supp (γ) = X.

Consequently, C∗ (X) is an EM-ring. �

Since C∗(X) is isomorphic to C(βX), see [9], we get the following result.

Corollary 3.9. Let X be a Tychonoff space. Then C(X) is an EM-ring if and
only if C(βX) is an EM-ring.

We now go forward to give a topological characterization of an EM-space,
but first we will need the following lemma.

Lemma 3.10. Let X be a Tychonoff EM-space. Then for every U ∈ Coz (X)
and every g ∈ C∗ (U) , there exists a zero set Z ∈ Z (X) such that U ⊆ X −Z,
IntZ = ∅, and g is continuously extendable on U ∪ (∂U − Z).
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Proof. Let U = coz (f) be a cozero set where f ∈ C∗ (X), and let g ∈ C∗ (U).
Then

k =

{
fg on U,
0 on X − U,

is continuous. As C (X) is an EM-ring, there exist α, β, γ, h ∈ C (X) such
that f = αh, k = βh, 0 = γh, and supp (α) ∪ supp (β) ∪ supp (γ) = X. Let
Z = Z (|α|+ |β|+ |γ|). Then U ⊆ X − Z, and IntZ = ∅.

Notice that U ⊆ coz (α) ∩ coz (f) ∩ coz (h). Thus, on U ,∣∣∣∣βα
∣∣∣∣ =

∣∣∣∣kf
∣∣∣∣ = |g| < M

for some M > 0. Thus for all x ∈ U ,

(∗) |β (x)|+ |α (x)|
M + 1

< |α (x)| .

Let x0 ∈ ∂U − Z. Then γ (x0) = 0, since U = supp (f) ⊆ supp (h) ⊆ Z (γ).
But x0 /∈ Z, thus x0 ∈ coz (|α|+ |β|+ |γ|), and so (|α|+ |β|) (x0) > 0. By
continuity of |α| + |β|, there is a neighborhood U1 of x0 such that for each
x ∈ U1,

(∗∗) 3

4
(|α|+ |β|) (x0) < (|α|+ |β|) (x) <

5

4
(|α|+ |β|) (x0) .

If α (x0) = 0, then by continuity of α, there is a neighborhood U2 of x0 such
that for each x ∈ U2,

|α (x)| < 1

4

(
(|α|+ |β|) (x0)

1 +M

)
and by (∗), for each x ∈ U ∩ U2,

(|α|+ |β|) (x) <
1

4
(|α|+ |β|) (x0) .

Clearly, this contradicts (∗∗) as U ∩ U1 ∩ U2 6= ∅. Therefore, α (x0) 6= 0. In
other words, ∂U − Z ⊆ coz (α). Evidently,

g∗ =

{
g on U
β
α on ∂U − Z ∈ C∗ (U ∪ (∂U − Z))

is the desired extension. �

We now give a topological characterization for EM-spaces.

Theorem 3.11. Let X be a Tychonoff space. Then X is an EM-space if and
only if for each U ∈ Coz (X), and each g ∈ C∗ (U) there is V ∈ Coz (X) such
that U ⊆ V , V = X, and g is continuously extendable on V .

Proof. (⇒) Assume X is an EM-space. Let U ∈ Coz (X) and f ∈ C∗ (X) such
that U = coz (f). Let g ∈ C∗ (U), and then

k =

{
fg on U
0 on X − U ∈ C∗(X).
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Let fβ ,kβ ∈ C (βX) be the extensions of f and k in βX, respectively. If

Ũ = coz
(
fβ
)
, then g̃ = kβ

fβ
∈ C∗

(
Ũ
)

, and g̃|U = g. On the other hand, C (βX)

is an EM-ring by Corollary 3.9. Hence, by Lemma 3.10, there are σ̃ ∈ C (βX)

with Ũ ⊆ βX−Z (σ̃) , IntβX Z (σ̃) = ∅, and g̃1 ∈ C∗
(
Ũ ∪

(
∂Ũ − Z (σ̃)

))
such

that g̃1 is an extension of g̃. Now,

g̃σ =

{
g̃1σ̃ on Ũ ∪

(
∂Ũ − Z (σ̃)

)
0 on ∂Ũ ∩ Z (σ̃)

∈ C∗
(
Ũ
)
.

By Teitze-Urysohn Theorem, g̃σ has an extension on βX, say g̃σ̃. Moreover,
on U , g̃σ̃ = gσ for σ = σ̃|X . Take V = coz (σ) . Then V = X (since IntβX Z (σ̃)
= ∅), and

g∗ =
g̃σ̃|V
σ
∈ C∗ (V )

is the desired extension of g.
(⇐) Let X be the prescribed space. Let f1, f2 ∈ C (X), and U = coz (f1) ∪

coz (f2). Then f1
|f1|+|f2| ,

f2
|f1|+|f2| ∈ C

∗ (U) . So by assumption, there exist dense

V1, V2 ∈ Coz (X), f∗1 ∈ C∗ (V1), and f∗2 ∈ C∗ (V2), such that f∗1 , f
∗
2 are ex-

tensions of f1
|f1|+|f2| ,

f2
|f1|+|f2| , respectively. Consider V = V1 ∩ V2, and let

σ1 ∈ C∗ (X) be such that V = coz (σ1). Let σ = |σ1| + (|f1|+ |f2|)
1
2 . Then

coz (σ) = V . Define

h =

{ |f1|+|f2|
σ on V ,
0 on X − V .

For continuity of h, it is sufficient to show that it is continuous on ∂V . Let
x0 ∈ ∂V , and ε > 0. Then h (x0) = 0, and there is a neighborhood U0 of x0,

such that for each x ∈ U0, (|f1|+ |f2|)
1
2 (x) < (|f1|+ |f2|)

1
2 (x0) + ε = ε. In

fact, for each x ∈ U0 ∩ V ∩ U ,

|h (x)| = |f1|+ |f2|
σ

(x) <
|f1|+ |f2|

(|f1|+ |f2|)
1
2

(x) = (|f1|+ |f2|)
1
2 (x) < ε.

So, h ∈ C (X).
Now let

α =

{
f∗1σ on V,

0 on X − V, β =

{
f∗2σ on V,

0 on X − V.

Then α, β ∈ C (X). By letting γ = σ − |α| − |β|, we get X = supp (σ) =
supp (γ + |α|+ |β|) ⊆ supp (|γ|+ |α|+ |β|) = supp (α) ∪ supp (β) ∪ supp (γ) ⊆
X.

Since f1 = αh, f2 = βh, and 0 = γh, we conclude that C (X) is an EM-
ring. �

Corollary 3.12. For a Tychonoff space X, the following statements are equi-
valent:
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(1) C(X) is an EM-ring;
(2) C∗(X) is an EM-ring;
(3) X is an EM-space;
(4) βX is an EM-space;
(5) For each f, g ∈ C(X), there exist h, α, β, γ ∈ C(X) such that f = hα, g =

hβ, 0 = hγ and Ann(α, β, γ) = 0;
(6) For each U ∈ Coz (X), and each g ∈ C∗ (U) there is V ∈ Coz (X) such

that U ⊆ V , V = X, and g is continuously extendable on V .

Someone may wonder whether being an EM-space is preserved by continuous
functions. Actually this is not true. The following is an example of a continuous
function that maps an EM-space to a space that is not an EM-space.

Example 3.13. Let W ∗ be the space of ordinals that are less than or equal
to ω1, the first uncountable ordinal. It was proved in [12] that every ordinal
space is cozero complemented, and it is shown in Theorem 4.1 in this paper
that a cozero complemented space is an EM-space.

Let S be the subspace of W ∗ that results after removing all limit ordinals,
and let Y = S ∪ {∞} be the one point compactification of S. It is shown in
Example 3.7 that Y is not an EM-space.

Consider the function f : W ∗ −→ Y defined by

f (x) =

{
x x is a non-limit ordinal,
∞ x is a limit ordinal.

Let V be open in Y. If ∞ /∈ V , then f−1 (V ) = V , and V is a union of isolated
points thus open. If ∞ ∈ V , then V is cofinite, and again f−1 (V ) is open. So,
f is continuous.

4. Relation with other spaces

In this section, we relate EM-spaces to some other well known spaces, and
show that EM-spaces include a wide class of spaces.

Concerning the relation between EM-rings and generalized morphic rings,
which was the motivation to start this article, using the result in [6] that any
countably generated z-ideal is generated by an idempotent, we get that for a
Tychonoff space X, the ring C(X) is generalized morphic if and only if X is
basically disconnected if and only if C(X) is a PP-ring. For more equivalent
conditions, see [14]. Note that this result is not necessarily true outside C(X),
since there are commutative rings that are generalized morphic but not PP-
rings. Thus, if C(X) is a generalized morphic ring, then it is an EM-ring, since
any PP-ring is an EM-ring, see [2]. It is still an open question to characterize the
relation between EM-rings and generalized morphic rings outside Noetherian
rings and C(X).

It was shown in Example 3.5 that any F-space is an EM-space, and now using
Corollary 3.12, we get an even clearer proof. Using the technique in Example
3.6, one deduce that any metric space is an EM-space, or more generally, if
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for each f ∈ C(X), there exists g ∈ C(X) with supp(f) = Z(g), then X is an
EM-space.

Theorem 4.1. A cozero complemented space is an EM-space.

Proof. Let X be a cozero complemented space. Let U ∈ Coz (X). Then there
exists U ′ ∈ Coz (X) such that U ∩ U ′ = ∅ and U ∪ U ′ = X. Let g ∈ C∗ (U) .

Then g∗ =

{
g on U
1 on U ′

∈ C∗ (U ∪ U ′) is the desired extension. �

It is well known that a Tychonoff space X is basically disconnected if and
only if X is a cozero complemented F-space. So, the set R of real numbers
with Euclidean topology is an EM-space which is not an F-space, while βN−N
is an EM-space that is not cozero complemented, since both spaces are not
basically disconnected. One may ask if there is an EM-space that is not an
F-space nor cozero complemented! The answer is yes; let X1 be a connected
F-space, and X2 be a connected cozero complemented space. Then the free
union space X = X1 + X2 is an EM-space that is neither an F-space nor a
cozero complemented space.

Recalling that a space X is a quasi F-space if every dense cozero set of X is
C*-embedded, it is directly deduced that a space X is an F-space if and only
if it is an EM-space and a quasi F-space. Quasi F-spaces have been studied in
number of articles including [11].

Recall that a space X is called an almost P-space if every Gδ-set has dense
interior, see [13]. An almost P-space which is an EM-space is an F-space, since
an almost P-space is a quasi F-space.

Now we give an extra condition on an EM-space to get a cozero comple-
mented space.

Theorem 4.2. A locally connected EM-space is cozero complemented.

Proof. Let X be an EM-space that is locally connected, U ∈ Coz (X), f ∈
C∗ (X) such that f > 0, and U = coz (f) . Consider g = cos

(
1
f

)
+ 2 ∈ C∗ (U) .

Then, by Theorem 3.11, there exists a dense cozero set V that contains U, and
g is continuously extendable on V. We need to show that ∂U ∩ V = ∅.

Let b ∈ ∂U , and let W be any neighborhood of b. Since X is locally
connected, W can be considered to be connected. Then for some a > 0,
f (W ∩ U) = (0, a). Moreover, for some n ∈ N, 1

2nπ < a. Therefore,[
1

(2n+ 1)π
,

1

2nπ

]
⊆ f (W ∩ U) .

So,

(∗ ∗ ∗) [1, 3] ⊆ g (W ∩ U) .

If b ∈ V, then g has a continuous extension at b, and this contradicts (∗ ∗ ∗).
This implies that ∂U ∩ V = ∅.
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Assume that l ∈ C∗ (X) , with V = coz (l). Then l (∂U) = 0. Furthermore,

l∗ =

{
0 on U
l elsewhere

∈ C∗ (X).

Eventually, U ∩ coz (l∗) = ∅, and U ∪ coz (l∗) = V = X. �

Corollary 4.3. A locally connected space is:
(1) an EM-space if and only if it is cozero complemented.
(2) an F-space if and only if it is basically disconnected.

The following diagram illustrates the relations just obtained, where all the
implications are strict, see also [10].

Basically disconnected Metric space
↙ ↘ ↓

F-space ∀f, ∃g : supp(f) = Z(g)
↘ ↓

EM-space ←− Cozero complemented
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