• 제목/요약/키워드: Weyl

검색결과 142건 처리시간 0.025초

NEW BROWDER AND WEYL TYPE THEOREMS

  • Berkani, Mohammed;Kachad, Mohammed
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.439-452
    • /
    • 2015
  • In this paper we introduce and study the new properties ($W_{\Pi}$), ($UW_{{\Pi}_a}$), ($UW_E$) and ($UW_{\Pi}$). The main goal of this paper is to study relationship between these new properties and other Weyl type theorems. Moreover, we reconsider several earlier results obtained respectively in [11], [18], [14], [1] and [13] for which we give stronger versions.

WEYL'S THEOREM AND TENSOR PRODUCT FOR OPERATORS SATISFYING T*k|T2|Tk≥T*k|T|2Tk

  • Kim, In-Hyoun
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.351-361
    • /
    • 2010
  • For a bounded linear operator T on a separable complex infinite dimensional Hilbert space $\mathcal{H}$, we say that T is a quasi-class (A, k) operator if $T^{*k}|T^2|T^k\;{\geq}\;T^{*k}|T|^2T^k$. In this paper we prove that if T is a quasi-class (A, k) operator and f is an analytic function on an open neighborhood of the spectrum of T, then f(T) satisfies Weyl's theorem. Also, we consider the tensor product for quasi-class (A, k) operators.

DERIVATIONS OF A WEYL TYPE NON-ASSOCIATIVE ALGEBRA ON A LAURENT EXTENSTION

  • Choi, Seul-Hee
    • 대한수학회보
    • /
    • 제43권3호
    • /
    • pp.627-634
    • /
    • 2006
  • A Weyl type algebra is defined in the book ([4]). A Weyl type non-associative algebra $\={WP_{m,n,s}}$ and its restricted sub-algebra $\={WP_{m,n,s_{\gamma}}}$ are defined in various papers ([1], [12], [3], [11]). Several authors 0nd all the derivations of an associative (Lie or non-associative) algebra in the papers ([1], [2], [12], [4], [6], [11]). We find all the non-associative algebra derivations of the non-associative algebra $\={WP_{0,2,0_B}$, where $B=\{{\partial}_0,\;{\partial}_1,\;{\partial}_2,\;{\partial}_{12},\;{\partial}^2_1,\;{\partial}^2_2\}$.

STUDY ON BROWDER'S SPECTRUMS AND WEYL'S SPECTRUMS

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • 제12권2호
    • /
    • pp.147-154
    • /
    • 2004
  • In this paper we give several necessary and sufficient conditions for an operator on the Hilbert space H to obey Browder's theorem. And it is shown that if S has totally finite ascent and $T{\prec}S$ then $f(T)$ obeys Browder's theorem for every $f{\in}H({\sigma}(T))$, where $H({\sigma}(T))$ denotes the set of all analytic functions on an open neighborhood of ${\sigma}(T)$. Furthermore, it is shown that if $T{\in}B(H)$ is a compact operator or a Riesz Operator then T obeys Browder's theorem and Weyl's theorem holds if and only if Browder's holds.

  • PDF

Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators

  • ZUO, FEI;YAN, WEI
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.885-892
    • /
    • 2015
  • In this paper, we mainly obtain the following assertions: (1) If T is a quasi-*-n-paranormal operator, then T is finite and simply polaroid. (2) If T or $T^*$ is a quasi-*-n-paranormal operator, then Weyl's theorem holds for f(T), where f is an analytic function on ${\sigma}(T)$ and is not constant on each connected component of the open set U containing ${\sigma}(T)$. (3) If E is the Riesz idempotent for a nonzero isolated point ${\lambda}$ of the spectrum of a quasi-*-n-paranormal operator, then E is self-adjoint and $EH=N(T-{\lambda})=N(T-{\lambda})^*$.

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.

GEOMETRIC REPRESENTATIONS OF FINITE GROUPS ON REAL TORIC SPACES

  • Cho, Soojin;Choi, Suyoung;Kaji, Shizuo
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1265-1283
    • /
    • 2019
  • We develop a framework to construct geometric representations of finite groups G through the correspondence between real toric spaces $X^{\mathbb{R}}$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the G-module structure of the homology of $X^{\mathbb{R}}$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type A and B, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties.

GRADIENT RICCI SOLITONS WITH HALF HARMONIC WEYL CURVATURE AND TWO RICCI EIGENVALUES

  • Kang, Yutae;Kim, Jongsu
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.585-594
    • /
    • 2022
  • In this article we classify four dimensional gradient Ricci solitons (M, g, f) with half harmonic Weyl curvature and at most two distinct Ricci-eigenvalues at each point. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, (V, g) is isometric to one of the following: (i) an Einstein manifold. (ii) a domain in the Riemannian product (ℝ2, g0) × (N, ${\tilde{g}}$), where g0 is the flat metric on ℝ2 and (N, ${\tilde{g}}$) is a two dimensional Riemannian manifold of constant curvature λ ≠ 0. (iii) a domain in ℝ × W with the warped product metric $ds^2+h(s)^2{\tilde{g}}$, where ${\tilde{g}}$ is a constant curved metric on a three dimensional manifold W.

SIMPLE ZEROS OF L-FUNCTIONS AND THE WEYL-TYPE SUBCONVEXITY

  • Peter Jaehyun Cho;Gyeongwon Oh
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.167-193
    • /
    • 2023
  • Let f be a self-dual primitive Maass or modular forms for level 4. For such a form f, we define Nsf(T):=|{ρ ∈ ℂ : |𝕵(ρ)| ≤ T, ρ is a non-trivial simple zero of Lf(s)}|.. We establish an omega result for Nsf(T), which is $N^s_f(T) = \Omega(T^{\frac{1}{6}-{\epsilon}})$ for any ∊ > 0. For this purpose, we need to establish the Weyl-type subconvexity for L-functions attached to primitive Maass forms by following a recent work of Aggarwal, Holowinsky, Lin, and Qi.

NOTES ON ${\overline{WN_{n,0,0_{[2]}}}$ I

  • CHOI, SEUL HEE
    • 호남수학학술지
    • /
    • 제27권4호
    • /
    • pp.571-581
    • /
    • 2005
  • The Weyl-type non-associative algebra ${\overline{WN_{g_n,m,s_r}}$ and its subalgebra ${\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [8], [9], [10], [12]. We will prove that the Weyl-type non-associative algebra ${\overline{WN_{n,0,0_{[2]}}}$ and its corresponding semi-Lie algebra are simple. We find the non-associative algebra automorphism group $Aut_{non}({\overline{WN_{1,0,0_{[2]}}})$.

  • PDF