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GEOMETRIC REPRESENTATIONS OF FINITE GROUPS ON

REAL TORIC SPACES

Soojin Cho, Suyoung Choi, and Shizuo Kaji

Abstract. We develop a framework to construct geometric representa-

tions of finite groups G through the correspondence between real toric
spaces XR and simplicial complexes with characteristic matrices. We

give a combinatorial description of the G-module structure of the homol-
ogy of XR. As applications, we make explicit computations of the Weyl

group representations on the homology of real toric varieties associated to

the Weyl chambers of type A and B, which show an interesting connec-
tion to the topology of posets. We also realize a certain kind of Foulkes

representation geometrically as the homology of real toric varieties.

1. Introduction

The fundamental theorem of toric geometry states that there is a bijective
correspondence between the class of toric varieties of complex dimension n
and the class of fans (consisting of strongly convex simplicial cones) in Rn.
This correspondence has opened up fertile research areas which reveal rich
interactions between geometry and combinatorics. For example, many studies
on the cohomology of toric varieties associated to root systems are found in the
literature such as [1, 14,22,27,28].

The real locus XR of a toric variety X of complex dimension n, which is the
fixed point set of the canonical involution, forms a real subvariety of real dimen-
sion n, and it is called a real toric variety. While many arguments for complex
toric varieties apply verbatim, it turns out that real toric varieties sometimes
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exhibit essentially different nature. In [8] a generalization of real toric vari-
ety called real toric space is introduced. In the present paper, we develop a
framework to construct geometric representations of finite groups through the
correspondence between real toric spaces and simplicial complexes with char-
acteristic matrices. More precisely, given an action of a finite group G on a
simplicial complex, we describe a necessary and sufficient condition with which
the action induces one on the corresponding real toric space XR. Furthermore,
the G-module structure of the homology of XR is described combinatorially
(Theorem 2.1).

As an application, we investigate real toric varieties associated to Weyl cham-
bers in Section 3. The result demonstrates sharp difference from the complex
case studied in [14,22,27,28]. In particular, we compute the Betti numbers for
some exceptional cases, and we describe explicitly the WR-module structures
of H∗(X

R
R) for R = An and Bn. Remarkably, the real cases of type A and

of type B reveal an interesting connection to the topology of posets studied
in [17, 21, 23, 25, 26, 30] (see also [31] for survey). We note that the real toric
varieties associated to the Weyl groups and their representations were already
considered in [18, 19]. We work on these objects from different viewpoints.
Especially, we provide simple combinatorial description for the representations
of real toric varieties associated to Weyl groups of types A and B as sums of
irreducible representations, whereas the known results in [18] for type A form
alternating sums. The representation for type B is unknown before.

In Section 4, we investigate in the opposite direction; given a group repre-
sentation, we construct a real toric space with an action of the group whose
homology carries the representation. This is a typical situation in geometric
representation theory, one of whose objectives is to seek for geometric objects
realising particular representations. Precisely, here we realize a certain kind
of Foulkes representation as the homology of real toric varieties. Our theory
provides yet another application of toric topology in representation theory.

As we are primarily interested in finite Weyl groups, and all their irreducible
representations over C are realized over Q (see [4] and the references therein),
the coefficients of (co)homology in this paper is always taken to be the rational
numbers Q unless otherwise stated.

2. Finite group action on real toric spaces

Real toric space is a topological generalization of (simplicial) real toric va-
riety. In this section, we briefly review the definitions and notations regarding
real toric spaces, following [8] and [11]. Then, we discuss the representation of
a finite group G on the homology of a real toric space, which is induced by a
G-action on combinatorial data.

Let K be a simplicial complex on m-vertices [m] = {1, . . . ,m}. The real
moment-angle complex RZK of K is defined as

RZK = (D1, S0)K =
⋃
σ∈K

{
(x1, . . . , xm) ∈ (D1)m | xi ∈ S0 when i /∈ σ

}
,
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where D1 = [−1, 1] is the closed interval and S0 = {−1, 1} is its boundary.
Let Λ: Zm2 → Zn2 be a linear map, where Z2 is the field with two elements.

We regard Λ as an n × m-matrix with elements in Z2, and call it a mod 2
characteristic matrix. The diagonal sign action of Zm2 on (D1)m induces an
action of ker Λ ⊂ Zm2 on RZK . The real toric space MR(K,Λ) corresponding
to the pair K and Λ is by definition the quotient space RZK/ ker Λ.

Indeed, a real (simplicial) toric variety is a real toric space. Let X be a
(simplicial) toric variety, and XR its real toric variety. By the fundamental
theorem of toric geometry, there is a (simplicial) fan Σ corresponding to X.
Let V be the set of rays of Σ and assume V = {v1, . . . , vm}. Then, the collection
of subsets of V constituting the cones of Σ form a simplicial complex K on V .
In addition, the primitive vectors in the direction of rays define a linear map
Λ: Zm2 → Zn2 , whose ith column is the mod 2 reduction of vi. Then, XR is
homeomorphic to the real toric space RZK/ ker Λ.

Denote by Row(Λ) the subspace of Zm2 spanned by the row vectors of Λ;
that is, Row(Λ) = Im(ΛT ) = (ker Λ)⊥, where (ker Λ)⊥ is the orthogonal com-
plement to ker Λ. Notice that Row(Λ) = Row(AΛ) and ker Λ = ker(AΛ) for
any invertible n × n-matrix A; that is, it is independent of the choice of the
basis of Zn2 . Throughout the paper, we identify the power set of [m] with Zm2
in the standard way; each element of [m] corresponds to a coordinate of Zm2 .

The group of simplicial automorphisms Aut(K) of K acts on the real mo-
ment-angle complex RZK , which is extensively studied by [2]. Our first theorem
considers finite group representations on the cohomology of real toric spaces,
which connects combinatorics, topology, and representation theory.

Theorem 2.1. Suppose G is a subgroup of Aut(K) which satisfies one of the
following two equivalent conditions

(1) G preserves ker Λ; that is, for any g ∈ G, ker Λ = ker ΛP−1
g , where Pg

is the permutation matrix Zm2 → Zm2 corresponding to g;
(2) for each element g ∈ G, there exists an n×n-matrix Ag such that ΛP−1

g =
AgΛ.

Then, the action of G on RZK induces one on MR(K,Λ) and we have the
following isomorphism of G-modules

(∗) H∗(M
R(K,Λ)) '

⊕
S∈RowΛ

H̃∗−1(KS).

Proof. We first prove the equivalence of two conditions (1) and (2). The row
space Row(Λ) and ker Λ are the orthogonal complements to each other in Zm2 .
Since the G-action on Zm2 is an isometry, ker Λ is G-stable if and only if Row(Λ)
is G-stable. This, in turn, is equivalent to that each row is mapped to a linear
combination of row vectors.

Assume one of (1) and (2) is satisfied. Since MR(K,Λ) is the quotient
RZK/ ker Λ, the action induces one on MR(K,Λ), which in turn induces a



1268 S. CHO, S. CHOI, AND S. KAJI

G-module structure on H∗(M
R(K,Λ)). Define a map H as the composition

H : ΣRZK −→
∨

S⊂[m]

ΣRZKS
−→

∨
S⊂[m]

Σ2|KS |,

where KS is the induced subcomplex of K with respect to S ⊂ [m]. The map
H is shown to be a homotopy equivalence in [3]. Moreover, it is shown to
be G-equivariant on the homology in [2, Corollary 2.3.11], where the action of
g ∈ G on the target space is induced by g : KS → KgS . Recall from [8] the
rational homotopy equivalence

ψ : Σ
∨

S∈Row(Λ)

Σ|KS |
Σι−→

∨
S⊂[m]

Σ2|KS |
H−1

−−−→ ΣRZK
Σq−−→ ΣMR(K,Λ),

where ι is the inclusion and q is the quotient. As all the maps appearing in the
definition of ψ are equivariant on the (co)homology, ψ induces an isomorphism
of G-representations (∗). �

This theorem provides a handy way to construct various geometric repre-
sentations of finite groups, which can be described explicitly in a combinatorial
way as we will see in later sections.

Example 2.2. Let K be a 4-gon on {1, 2, 3, 4}, and G a cyclic group of order
4 generated by g. Consider the G-action on K defined by

g · i =

{
i+ 1, i = 1, 2, 3;
1, i = 4.

Put Λ1 := ( 1 0 1 1
0 1 0 1 ) and Λ2 := ( 1 0 1 0

0 1 0 1 ). Then, one can see that G does not
preserve ker Λ1 because

g · Λ1 =

(
1 1 0 1
1 0 1 0

)
has a different row space from that of Λ1. On the other hand, G preserves
ker Λ2 because

g · Λ2 = g3 · Λ2 =

(
0 1 0 1
1 0 1 0

)
=

(
0 1
1 0

)
Λ2,

and g2 · Λ2 = g4 · Λ2 = Λ2. This action on the corresponding real toric space
MR(K,Λ2) ' T 2 is seen to be g : T 2 → T 2, g(x, y) = (−y, x). On the ho-
mology, H∗(M

R(K,Λ2)) is the trivial representations on degree 0 and 2, and
the two dimensional irreducible representation (over Q) on degree 1. On the

other hand by (∗), we have H1(MR(K,Λ2)) ' H̃0({1, 3}) ⊕ H̃0({2, 4}). Since
g{1, 3} = {2, 4} and g{2, 4} = {3, 1}, taking account the sign of the induced
map g∗ on the reduced homology, we can also see that it is the two dimensional
irreducible representation.
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3. Real toric varieties associated to Weyl chambers

An illustrative family of examples of Theorem 2.1 are obtained by the real
toric varieties associated to Weyl chambers. The complex toric varieties asso-
ciated to Weyl chambers are studied by [14,22,27,28], and the real toric variety
associated to the type An Weyl chambers is studied by [18, Corollary 1.2], [29]
and [10]. Here, we carry out explicit computations of the representation of the
Weyl groups on the homology, which contrast sharply with the complex toric
case.

We fix some notations as follows;

• Φ: an irreducible root system of type R and rank n.
• ∆ = {α1, . . . , αn}: a fixed set of simple roots of Φ.
• Ω = {ω1, . . . , ωn}: the set of fundamental co-weights. That is, (ωi, αj)

= δij with respect to the inner product in the ambient space.
• WR = 〈s1, . . . , sn〉: the Weyl group generated by the simple reflections

acting on R〈Ω〉.
• VR = WR · Ω = {v1, . . . , vN}: the set of rays spanning the chambers.
• KR ⊂ 2VR : the corresponding simplicial complex. It is called the

Coxeter complex of type R [20, §1.15].
• ΛR = (v1, v2, . . . , vN ): the mod 2 characteristic matrix, where the

columns are the mod 2 coordinates of the rays. We set v1 = ω1, . . .,
vn = ωn so that the first n× n-submatrix is the identity.
• XR

R: the real toric space MR(KR,ΛR); it is indeed the real toric variety
associated to the Weyl chambers.

We recall the combinatorial structure of the Coxeter complex KR. See [5] for
more details.

• The set of 0-simplices is the WR-orbit of the fundamental co-weights
WR ·Ω. The orbits WRωi and WRωj are disjoint if i 6= j. The stabilizer
of ωi is the parabolic subgroup Wi generated by {sj | j 6= i}. Hence,
the set of vertices is described by

VR = {wωi | w ∈WR/Wi, ωi ∈ Ω}.

• Two vertices u and v form a 1-simplex if and only if there exist w ∈WR

and ωi, ωj ∈ Ω such that wu = ωi, wv = ωj . Similarly, the set of (k−1)-
simplices is

{w · L | L ⊂ Ω, |L| = k,w ∈WR/WL},

where WL is the stabilizer of L = {ωi1 , . . . , ωik}, which is the parabolic
subgroup of WR generated by {si | i 6∈ L}. In particular, maximal
simplices are obtained by the free and transitive action of WR on the
fundamental chamber.

By definition, the Weyl group WR acts on KR. We compute the action of
WR on the rows of ΛR explicitly.
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Lemma 3.1. The Weyl group WR acts on KR and preserves ker ΛR. More pre-
cisely, let ΛjR ∈ Zm2 be the jth row of ΛR, which corresponds the ωj coordinates
of the rays. Then, we have

(si(ΛR))j = ΛjR − cijΛ
i
R,

where cij = (α∨i , αj) are the entries of the Cartan matrix of R.

Proof. This is a special instance of Theorem 2.1 since WR acts on R〈Ω〉 linearly.
Recall that the action of the simple reflections on R〈Ω〉 is given by

si(ωj) = ωj −
2(αi, ωj)

(αi, αi)
αi

=

{
ωj (i 6= j)

ωi − α∨i (i = j),

where α∨i = 2αi

(αi,αi)
is the simple co-root. Therefore, if we write α∨i =

∑
j cijωj ,

we have

si(
∑
j

djωj) =
∑
j

(dj − dicij)ωj

and (si(ΛR))j = ΛjR − cijΛiR ∈ Row(ΛR). �

Now we state a theorem which gives a combinatorial description of the WR

module structure of the (co)homology of XR
R.

Theorem 3.2. There is a WR-module isomorphism

H∗(XR
R) ∼= H∗(X

R
R) ∼=

⊕
S∈Row(ΛR)

H̃∗−1(KS).

Proof. Since irreducible characters of WR-modules are real-valued for any Weyl
group WR, WR-modules are self-dual. As H∗(XR

R) and H∗(X
R
R) are dual to

each other as WR-modules, we obtain the first isomorphism. The second iso-
morphism follows by Lemma 3.1 and Theorem 2.1. �

In the following subsections, by using Lemma 3.1 and Theorem 3.2, we com-
pute the Betti numbers of XR

R for some exceptional cases, and describe explic-
itly the WR-module structures of H∗(X

R
R) for R = An and Bn. In particular,

H∗(X
R
An

) is isomorphic to the famous Foulkes representation.

3.1. Computation of Betti numbers

As an interesting application of this explicit description, we compute the
Betti numbers of XR

R for some exceptional cases. The (rational) Betti number
of XR

R has been computed when R = An (in [10], [18], and [29]), R = Bn
(in [9]), and when R = Cn and Dn (in [7]). However, for exceptional types
the Betti numbers have not been known except for R = G2. It is known that
XR
G2

is homeomorphic to the connected sum of ten copies of the real projective
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plane. In this subsection, we successfully apply our result to compute the Betti
numbers for the cases R = F4 and E6.

In order to compute the Betti number of XR
R, it is enough to compute the

rank of H∗(KS) for all S ∈ Row(ΛR) due to (∗). By Lemma 3.1, KS ' KgS for
S ∈ Row(ΛR) and g ∈WR. Therefore, we only have to consider representatives
KS of the WR-orbits in Row(ΛR), which can be obtained by the explicit de-
scription of the WR-action on the rows of Λ given in Lemma 3.1. The reduced

Betti number β̃∗(KS) of KS is computable by a computer program (for exam-
ple, CHomP [12]) within reasonable time for R of small rank. By exploiting this
symmetry, we obtained the following result with the aid of computer (the Maple
code used to produce the result is available at https://github.com/shizuo-
kaji/WeylGroup).

Proposition 3.3. The Betti numbers of XR
R for R = G2, F4, E6 are given as

follows:

βi(X
R
G2

) =

 1, i = 0;
9, i = 1;
0, otherwise,

βi(X
R
F4

) =


1, i = 0;
57, i = 1;
264, i = 2;
0, otherwise,

and

βi(X
R
E6

) =


1, i = 0;
36, i = 1;
1323, i = 2;
4392, i = 3;
0, otherwise.

Proof. For type G2, there are three non-zero elements in Row(ΛG2). These are
all in the same orbit, and, for the first row S of ΛG2 , KS consists of 4 distinct

points, and hence, β̃0(KS) = 3. Therefore, the first reduced Betti number

β̃1(XR
G2

) of XR
G2

is 3× 3 = 9.
For type F4 there are 15 non-zero elements in Row(ΛF4) and they are par-

titioned into two orbit types; 12 elements are in the orbit generated by the

first row of ΛF4 (β̃0(KS) = 1, β̃1(KS) = 22) and 3 elements are in the orbit

generated by the third row (β̃0(KS) = 15).
For type E6 there are 63 non-zero elements in Row(ΛE6

). They are parti-
tioned into two orbit types; 27 elements are in the orbit generated by the first

row (β̃1(KS) = 49) and 36 elements are in the orbit generated by the sum of

the first and the fourth row (β̃0(KS) = 1, β̃2(KS) = 122). �

Remark 3.4. It is well-known the ith Z2-Betti number of a real toric variety
XR is equal to the ith component of the h-vector of its underlying complex K
(see [13]). We denote by hq(K) the h-polynomial of a simplicial complex K,
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and by χ(XR) the Euler characteristic number of XR. Here is the list of the
h-polynomials of KR for exceptional types R:

hq(KG2
) = q2 + 10q + 1,

hq(KF4
) = q4 + 236q3 + 678q2 + 236q + 1,

hq(KE6
) = q6 + 1272q5 + 12183q4 + 24928q3 + 12183q2 + 1272q + 1,

hq(KE7) = q7 + 17635q6 + 309969q5 + 1123915q4 + 1123915q3 + 309969q2

+ 17635q + 1,

hq(KE8
) = q8 + 881752q7 + 28336348q6 + 169022824q5 + 300247750q4

+ 169022824q3 + 28336348q2 + 881752q + 1.

We recall that the Euler characteristic does not depend on the field with respect
to which cohomology is taken. Therefore, by using above, we can compute the
Euler characteristic numbers as

χ(XR
G2

) = −8, χ(XR
F4

) = 208, χ(XR
E6

) = −3104,

χ(XR
E7

) = 0, and χ(XR
E8

) = 17111296.

The Euler characteristic numbers of XR
G2
, XR

F4
, and XR

E6
can be also computed

from Proposition 3.3.
For type E7, there are three orbit types; 63 elements are in the orbit gener-

ated by the first row of ΛE7
, 63 elements are in the orbit generated by the sum

of the fifth and the seventh rows, and one element in the orbit generated by
the sum of the first, the fifth and the seventh rows. For type E8, there are two
orbit types; 120 elements are in the orbit generated by the first row of ΛE8 ,
135 elements are in the orbit generated by the sum of the sixth and the eighth
rows. However, we are currently unable to compute the reduced Betti numbers
of KS since it is too big.

Remark 3.5. It should be noted that KS also determines the torsions in
(co)homology except for 2-torsion. More precisely, by [11] and [6], we know
that, for k > 1 and odd number q,

H∗(M(K,Λ);Z2k) ∼=
⊕

S∈Row(Λ)

H̃∗−1(KS ;Z2k−1), and

H∗(M(K,Λ);Zq) ∼=
⊕

S∈Row(Λ)

H̃∗−1(KS ;Zq).

With the help of computer program, one can easily check that each KS in
Proposition 3.3 is torsion-free, so XR

R for R = G2, F4, E6 has no torsion in
(co)homology other than 2-torsion. Therefore, by Proposition 3.3 and Re-
mark 3.4, one can apply the universal coefficient theorem to compute the inte-
gral (co)homology group for XR

R for R = G2, F4, E6.
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3.2. Type An representation

When R = An, the Weyl group WAn
is the symmetric group Sn+1 and KAn

has a nice description as the dual of the permutohedron of order n+1. The map
VAn

→ 2[n+1] \ {[n + 1], ∅} sending wωi → {w(1), w(2), . . . , w(i)} induces an
Sn+1-equivariant bijection. Under this identification, J1, . . . , Jk ⊂ [n+ 1] form
a simplex if and only if they form a nested chain of subsets up to permutation.
To represent ΛAn

, we use the basis consisting of ek := (1, k)ω1 for 1 ≤ k ≤ n,
where (1, k) ∈ Sn+1 is the transposition. The coordinates of J ∈ VAn

with this
basis are given by

∑
k∈J ek, where we set en+1 =

∑n
i=1 ei.

Note that Theorem 3.2 specializes in this case to giving an Sn+1-module

isomorphism H∗(X
R
An

) ∼=
⊕

S∈Row(ΛAn ) H̃∗−1(KS). Thus, in order to compute

H∗(X
R
An

), we have to investigate each KS . We establish a correspondence
between Row(ΛAn

) and the even cardinality subsets of [n+ 1] in the following
way. Any element S ∈ Row(ΛAn

) is a linear sum of rows of ΛAn
. If it is a

sum of an even number of rows, say i1, i2, . . . , i2rth rows, then we associate
IS = {i1, i2, . . . , i2r} ⊂ [n + 1]. If it is a sum of an odd number of rows, say
i1, i2, . . . , i2r−1th rows, then we associate IS = {i1, i2, . . . , i2r−1, n+1} ⊂ [n+1].

One can see that KS is the full-subcomplex of KAn
consisting of the vertices

J such that |J ∩ IS | is odd. By [10, Lemma 5.3], one can inductively remove
J 6⊂ IS from KS without changing the homotopy type of KS . This gives
a homotopy equivalence between KS and the poset complex associated to the
odd rank-selected Boolean algebra BoddIS

over IS , which induces an Sn+1-module
isomorphism

(1) H∗(X
R
An

) ∼=
⊕

I∈([n+1]
2r )

H̃∗−1(BoddI ).

Before we describe the Sn+1-module structure of H∗(X
R
An

) in detail, we review
some basic facts on the representations of symmetric groups. A reference for
basics of the representation theory of symmetric groups is [24]. A partition λ
of a positive integer k, denoted by λ ` k, is a non-increasing sequence λ =
(λ1, . . . , λ`) of positive integers such that

∑
i λi = k and we let |λ| = k. The

diagram of a partition λ is the left-justified array of λi boxes in the ith row,
and a standard tableau of shape λ is a filling of boxes in the diagram of λ with
numbers 1, 2, . . . , |λ| whose rows are increasing from left to right and columns
are increasing from top to bottom. The number of standard tableaux of shape
λ is denoted by fλ. For two partitions λ, µ such that µi ≤ λi for all i, µ ⊆ λ in
notation, the diagram of λ/µ is the diagram of λ with the first µi boxes deleted
in the ith row for all i. An entry i of a standard tableau is a descent if i+ 1 is
located in a lower row than the row where i is located. The set of descents of
a standard tableau T is called the descent set of T .

Irreducible representations of the symmetric group Sk are indexed by the
partitions of k. For a partition λ = (λ1, . . . , λ`) of k, corresponding irreducible
Sk-module Sλ is called the Specht module, and it is known that dimSλ = fλ.
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Each direct summand on the right hand side of (1) was computed by Solomon
and also by Stanley:

Theorem 3.6 ([25, 26]). Let Q ⊂ [m− 1]. Then the homology of the Q-rank-

selected poset BQ[m] is given, as an Sm-module, by

H̃∗(BQ[m])
∼=


⊕
ν

cQ,νS
ν (∗ = |Q| − 1)

0 (∗ 6= |Q| − 1),

where cQ,ν is the number of standard tableaux of shape ν with descent set Q.
In particular, by setting Q = {1, 3, . . . , 2r − 1}, we have an S[2r]-module

isomorphism

H̃∗(Bodd[2r])
∼=


⊕
ν

cQ,νS
ν (∗ = r − 1)

0 (∗ 6= r − 1).

Remark 3.7 (See [31, Theorem 3.4.4]). The module
⊕

ν cQ,νS
ν that appears in

Theorem 3.6 can be understood as a skew Specht module Sλ/µ for some skew
hook λ/µ. A skew hook is an edge-wise connected skew Young diagram which
contains no (2 × 2)-subdiagram. A skew hook with k boxes is determined
by its descent set S ⊂ [k − 1]; when one fills a skew hook with numbers 1
through k in order from southwest to northeast, i is a descent of the skew
hook if i + 1 is placed above i. A skew Specht module corresponding to a
skew hook is often referred to as the Foulkes representation. Its decomposition
into irreducible modules (Specht modules of ordinary shape) follows from the
Littlewood-Richardson rule, and cQ,ν is seen to be the Littlewood-Richardson
number cλµν . See [24] for the description of Littlewood-Richardson numbers.

In particular,

H̃r−1(Bodd[2r])
∼= Sλr/µr

when λr = (r, r, r − 1, r − 2, . . . , 2, 1), and µr = (r − 1, r − 2, . . . , 2, 1). For
example, the diagram of the skew hook λ2/µ2 is

whose descent set is {1, 3}.

Let SI be the stabilizer subgroup of Sn+1 fixing all i 6∈ I. Then SI preserves

H̃∗(BoddI ) and SĪ acts on H̃∗(BoddI ) trivially, where Ī = [n + 1] \ I. Moreover,

each I ∈
(

[n+1]
2r

)
is in one to one correspondence with a coset σ(S{1,...,2r} ×

S{2r+1,...,n+1}) in Sn+1 via I = σ{1, . . . , 2r}. This proves the following.
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Theorem 3.8. The rth homology Hr(X
R
An

) of XR
An

with the natural action of
Sn+1, is isomorphic to the induced representation

Ind
Sn+1

S{1,...,2r}×S{2r+1,...,n+1}
(H̃r−1(Bodd[2r])⊗ S

(n−2r))

of Sn+1, where S(n−2r) is the trivial representation of S{2r+1,...,n+1}.

The irreducible decomposition is given by a standard argument:

Corollary 3.9. Let Q = {1, 3, . . . , 2r− 1} and let cQ,ν be the number of stan-
dard tableaux of shape ν with descent set Q. Then, we have

Hr(X
R
An

) ∼=
⊕

η`(n+1)

(∑
ν

cQ,ν

)
Sη,

where ν runs over all partitions of 2r that are contained in η, and η/ν has at
most one box in each column.

Proof. By Theorem 3.8, we have following Sn+1 module isomorphisms.

Hr(X
R
An

) ∼= Ind
Sn+1

S{1,...,2r}×S{2r+1,...,n+1}

(⊕
ν

cQ,νS
ν ⊗ S(n−2r)

)
∼=
⊕
ν

cQ,ν

(
Ind

Sn+1

S{1,...,2r}×S{2r+1,...,n+1}

(
Sν ⊗ S(n−2r)

))
∼=
⊕
ν

cQ,ν

(⊕
ν η

Sη

)
∼=

⊕
η`(n+1)

(∑
ν η

cQ,ν

)
Sη

where ν  η means that we can obtain η from ν by adding n+ 1− 2r boxes so
that no two new boxes are in one column. In the third isomorphism, the well
known Pieri rule (a special case of the Littlewood-Richardson rule) is used. �

Example 3.10. If n = 5 and r = 3, we let Q = {1, 3, 5}. Then, the homology
H3(XR

A5
) is decomposed into irreducible S6 modules in the following way due

to Corollary 3.9.

H3(XR
A5

) ∼= S(3,3) ⊕ 2S(3,2,1) ⊕ S(3,1,1,1) ⊕ S(2,2,2) ⊕ S(2,2,1,1) .

For example, when η = (2, 2, 2) ` 6, the only ν we have to consider is (2, 2, 2)
and cQ,ν = 1 hence S(2,2,2) is a summand in the decomposition of H3(XR

A5
)

with multiplicity 1. We list all standard tableaux of shape ν with descent set
Q for all possible ν ` 6.

1 3 5

2 4 6

1 3 5

2 4

6

1 3 5

2 6

4

1 3 5

2

4

6

1 3

2 5

4 6

1 3

2 5

4

6
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It can be checked that

dim(S(3,3)) + 2dim(S(3,2,1)) + dim(S(3,1,1,1)) + dim(S(2,2,2)) + dim(S(2,2,1,1))

= 5 + 2× 16 + 10 + 5 + 9 = 61,

which is the number of alternating permutations of length 6 (times
(
n+1
2r

)
), and

it is known to be the dimension of H3(XR
A5

) (see [9, 18]).

Example 3.11. When n = 5 and r = 2, we have the decomposition ofH2(XR
A5

)
as in the following;

H2(XR
A5

) ∼= S(4,2) ⊕ S(4,1,1) ⊕ 2S(3,2,1) ⊕ S(3,1,1,1) ⊕ S(2,2,2) ⊕ S(2,2,1,1) .

To compute the multiplicity of S(3,2,1), we consider partitions of 2r = 4, which
is contained in (3, 2, 1) and can be obtained from (3, 2, 1) by deleting two boxes
from different columns. There are three such partitions (2, 1, 1), (2, 2) and (3, 1),
and the values cQ,ν for each of them are 1, 1, 0 respectively where Q = {1, 3}.
Hence S(3,2,1) appears twice in the decomposition of H2(XR

A5
). By computing

the dimension of each Specht module, we have

dim(H2(XR
A5

)) = 9 + 10 + 2× 16 + 10 + 5 + 9 = 75 .

Note that 75 = 5 × 15, where 5 is the number of alternating permutations of
length 4, and 15 is the index of the parabolic subgroup S4 ×S2 in S6.

Remark 3.12. We, in Corollary 3.9, show how to write down the rational ho-
mology Hr(X

R
An

) as a sum of irreducible Sn+1-modules in an explicit way,
while Henderson in his 2012 paper showed that the Sn+1-module structure of
the rational cohomology Hr(XR

An
) is isomorphic to a signed sum of induced

representations of the tensor product of a trivial representation and a sign
representation of some parabolic subgroups of Sn+1; see Corollary 1.2 in [18].

3.3. Type Bn representation

When R = Bn, the Weyl group WBn
is the group of signed permutations

(also called the hyperoctahedral group) and KBn has a nice description as
the dual of the type Bn permutohedron. We write [±n] = {±1, . . . ,±n},
−J = {−j | j ∈ J} for J ⊂ [±n], and Tn = {J ∈ 2[±n] | J ∩ −J = ∅, J 6= ∅}.
For each J ∈ Tn, we write J± = (J ∪ −J) ∩ [n].

The map VBn → Tn sending wωi → {w(1), w(2), . . . , w(i)} induces a WBn -
equivariant bijection. Under this identification, J1, . . . , Jk ∈ Tn form a simplex
if and only if they form a nested chain of subsets up to permutation. To
represent ΛBn

, we use the basis consisting of ek := (1, k)ω1 for 1 ≤ k ≤ n,
where (1, k) ∈ WBn

is the transposition. The coordinates of J ∈ VBn
with

this basis are given by
∑
k∈J± ek. Note that, by Theorem 2.1, H∗(X

R
Bn

) ∼=⊕
S∈Row(ΛBn ) H̃∗−1(KS) as WBn -modules. We establish a correspondence be-

tween Row(ΛBn
) and the power set of [n] in the following way. If S ∈ Row(ΛBn

)
is a sum of r rows, say i1, . . . , irth rows, then we associate IS = {i1, . . . , ir} ⊂
[n] to it.



FINITE GROUP REPRESENTATION ON REAL TORIC SPACES 1277

One can see that KS is the full-subcomplex of KBn
consisting of the vertices

J such that |J± ∩ IS | is odd. By Lemmas 3.7 and 3.8 in [9], all vertices J
such that J± 6⊂ IS are removable without changing the homotopy type of KS .
Therefore, KS is homotopy equivalent to the poset complex associated to the
odd rank-selected lattice CoddIS

of faces of the cross-polytope over IS .
We review some basic facts on the representations of hyperoctahedral groups.

(See [16]). A double partition (λ, µ) of n, denoted by (λ, µ) ` n, is an ordered
pair of partitions such that |λ|+ |µ| = n.

Irreducible representations of the hyperoctahedral group WBn are indexed
by the double partitions of n and we let S(λ,µ) be an irreducible representation
corresponding to the double partition (λ, µ). Then the dimension of S(λ,µ) is
given by the number of double standard tableaux of shape (λ, µ), that is the
ordered pair of standard tableaux of shape λ and µ respectively such that each
number from 1 to n appears exactly once in two tableaux. Hence dim(S(λ,µ)) =(
n
k

)
fλfµ, where λ ` k. For a double standard tableau (T1, T2), an entry i is a

descent if

(1) i and i + 1 are in the same tableau and i + 1 appears in a lower row
than i, or

(2) i is in T1, i+ 1 is in T2, or
(3) i = n appears in T1.

Stanley computed the WBr
-module H̃∗(CoddIS

):

Theorem 3.13 ([26]). When |IS | = r,

H̃∗(CoddIS ) ∼=


⊕

(λ,µ)`r

b(λ, µ)S(λ,µ) (∗ = b r−1
2 c),

0 (∗ 6= b r−1
2 c),

where b(λ, µ) is the number of double standard Young tableaux of shape (λ, µ)
whose descent set is the set of odd numbers less than or equal to r = |λ|+ |µ|.

Similarly to Theorem 3.8, we can prove the following theorem:

Theorem 3.14. The kth homology Hk(XR
Bn

) of XR
Bn

with the natural action
of WBn is isomorphic to the sum of two induced representations

⊕
r∈{2k−1,2k}

Ind
WBn

WBr×WBn−r

 ⊕
(λ,µ)`r

b(λ, µ)S(λ,µ) ⊗ S(∅;(n−r))


of WBn , where S(∅;(n−r)) is the trivial representation of WBn−r and the em-
bedding WBr ×WBn−r ⊆ WBn comes from the diagonal embedding GLr(R) ×
GLn−r(R) ⊆ GLn(R).

The irreducible decomposition is given by a standard argument:
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Corollary 3.15. We have

Hk(XR
Bn

) ∼=
⊕

(λ,ν)`n

 ∑
r∈{2k−1,2k}

∑
µ

b(λ, µ)

S(λ,ν) ,

where µ in the inside summation, runs over all partitions that are contained in
ν, and ν/µ has (n− r) boxes with at most one box in each column.

Proof. We compute a summand of the decomposition given in Theorem 3.14
using (type B) Littlewood-Richardson rule. Then the result is a direct conse-
quence.

We have the following WBn
-module isomorphisms:

Ind
WBn

WBr×WBn−r

 ⊕
(λ,µ)`r

b(λ, µ)S(λ,µ) ⊗ S(∅;(n−r))


∼=

⊕
(λ,µ)`r

b(λ, µ)
(

Ind
WBn

WBr×WBn−r
(S(λ,µ) ⊗ S(∅;(n−r)))

)

∼=
⊕

(λ,µ)`r

b(λ, µ)

 ⊕
(ν1,ν2)

cν1λ,∅c
ν2
µ,(n−r)S

(ν1,ν2)


∼=

⊕
(λ,µ)`r

b(λ, µ)

(⊕
µ ν

S(λ,ν)

)
∼=

⊕
(λ,ν)`n

(∑
µ ν

b(λ, µ)

)
S(λ,ν),

where µ  ν means that we can obtain ν from µ by adding n − r boxes
so that no two new boxes are in one column. In the second isomorphism, we
used the Littlewood-Richardson rule for hyperoctahedral group representations
(see Chapter 6 of [15]), where cγα,β is the well known Littlewood-Richardson
number. �

Example 3.16. We let n = 3 and k = 2, then since 2k = 4 > n we need
take care of the case when r = 3 only. Among 10 possible double partitions
(λ, µ) ` 3, only four of them have nonzero b(λ, µ); b((1), (1, 1)) = b((2), (1)) =

b((1, 1), (1)) = b((2, 1), ∅) = 1. For example,

(
1

3
, 2

)
is the double

standard tableau of shape ((1, 1), (1)) with descent set {1, 3}. We hence have
the following decomposition of H2(XR

B3
) into irreducible WB3

modules;

H2(XR
B3

) ∼= S((1),(1,1)) ⊕ S((2),(1)) ⊕ S((1,1),(1)) ⊕ S((2,1),∅) .

Since dim(S((1),(1,1)))=dim(S((2),(1)))=dim(S((1,1),(1))) = 3 and dim(S((2,1),∅))
= 2, dim(H2(XR

B3
)) = 11, which is the number of alternating signed permuta-

tions in WB3
(see [9]).
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Example 3.17. Due to Corollary 3.15, we have the following decomposition;

H1(XR
B3

) ∼= S(∅,(2,1)) ⊕ S(∅,(1,1,1)) ⊕ 2S((1),(2)) ⊕ S((1),(1,1)) .

Since dim(S(∅,(2,1))) = 2, dim(S(∅,(1,1,1))) = 1, dim(S((1),(2))) = dim(S((1),(1,1)))
= 3, we have

dim(H1(XR
B3

)) = 12 =

(
3

2

)
b2 +

(
3

1

)
b1,

where bi is the number of alternating signed permutations in WBi , as it was
shown in [9].

4. Real toric varieties associated to nestohedra

In this section, we deal with real toric varieties corresponding to nestohedra
as a generalization of XR

An
introduced in Section 3. Then, we realize some

Foulkes representations as the top homology of those varieties.
A building set B on a finite set S is a collection of nonempty subsets of S

such that

(1) B contains all singletons {i}, i ∈ S,
(2) if I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.

Let B be a building set on [n+ 1] = {1, . . . , n+ 1}. If [n+ 1] ∈ B, then B is
said to be connected.

Definition 4.1. For a connected building set B on [n + 1], a subset N ⊂
B \ {[n+ 1]} is called a nested set if both of the following conditions hold:

(N1) For any I, J ∈ N , one has I ⊂ J , J ⊂ I, or I ∩ J = ∅.
(N2) For any collection of k ≥ 2 disjoint subsets J1, . . . , Jk ∈ N , their union

J1 ∪ · · · ∪ Jk is not in B.

Let VB = B \ {[n + 1]}. A simplicial complex KB over VB called the nested
set complex is defined to be the set of all nested sets for B.

It should be noted that KB is realizable as the boundary complex of a
Delzant polytope PB. Refer to [10, Section 3] for details. The normal vectors
of facets of PB define a characteristic matrix ΛB over KB: the column of ΛB

indexed by I ∈ B\{[n+1]} is
∑
k∈I ek, where en+1 =

∑n
i=1 ei. Then we obtain

the real toric variety XR
B := MR(KB,ΛB) associated to a connected building

set B. Notice that VB is a subset of VAn
, and the corresponding column of ΛB

is equal to that of ΛAn
.

We consider the automorphism group Aut(B) of B consisting of all elements
of Sn+1 which preserve B. Then, Aut(B) ⊂ Sn+1 acts on B as well as KB.

Lemma 4.2. Let B be a connected building set. Then, Aut(B) acts on XR
B

and we have an Aut(B)-module isomorphism

H∗(X
R
B) ∼=

⊕
S∈Row(ΛB)

H̃∗−1 ((KB)S) .
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Proof. For each g ∈ Aut(B) ⊂ Sn+1, there exists an n × n-matrix Ag such
that g · ΛAn

= AgΛAn
by Lemma 3.1. Since ΛB is obtainable from ΛAn

by
removing columns, we have g ·ΛB = AgΛB. Therefore, the lemma follows from
Theorem 2.1. �

Now, we consider a particular class of connected building sets on [n + 1]
whose automorphism group is Sn+1. As in Section 3.2, we denote by BI the

Boolean algebra over I ⊂ [n+ 1], and by BQI the rank selected Boolean algebra
over I with respect to Q ⊂ [n+ 1].

For k ≥ 1, we set Qk = {1, k + 1, . . . , n + 1}. Then, Bn,k = BQk

[n+1] is

a connected building set and Aut(Bn,k) = Sn+1. We remark that this is a
generalisation of XR

An
as Bn,1 for k = 1 is the power set of [n + 1] and XR

Bn,1

is exactly equal to XR
An

.

Similarly to the case XR
An

, we identify an element S ∈ Row(ΛBn,k
) with the

even cardinality subsets IS of [n+ 1], then Lemma 4.2 specializes to giving an

Sn+1-module isomorphism H∗(X
R
Bn,k

) ∼=
⊕

IS∈([n+1]
2r ) H̃∗−1(KS).

Lemma 4.3. Let n be an odd integer, and S ∈ Row(ΛBn,k
) the sum of all row

vectors of Row(ΛBn,k
), that is, IS = [n+ 1]. Then, KS is Sn+1-equivariantly

homeomorphic to BQ[n+1], where Q = {1, 2, . . . , k} ∪ {1, 3, 5, . . . , n}.

Proof. We observe that VBn,k
= {J ⊂ [n+1] | |J | = 1 or k < |J | ≤ n}, and KS

is the full-subcomplex of KBn,k
on the vertices J ∈ VBn,k

such that |J | is odd.
It should be noted that any set of k singletons in KS form a (k− 1)-simplex in

KS . Therefore, we can obtain BQ[n+1] by taking the barycentric subdivision of

such (k− 1)-simplices, and hence, K ′S is homeomorphic to BQIS . It is clear that
it is compatible with the Sn+1-action. �

By Theorem 3.6 and Remark 3.7, we obtain:

Theorem 4.4. Let n be an odd integer. The Foulkes representation appears
on the top homology of XR

Bn,k
. More precisely, we have an Sn+1-module iso-

morphism

H∗(X
R
Bn,k

) ∼=

{
0 (∗ > d)

SλQ (∗ = d),

where d = n+1
2 + bk2 c, Q = {1, 2, . . . , k} ∪ {1, 3, 5, . . . , n}, λQ is the skew hook

with n+ 1 cells whose descent set is Q, and SλQ is the skew Specht module.

Proof. For IS = [n + 1], by Lemma 4.3, KS is homeomorphic to BQ[n+1] and

Hd−1(KS) ∼= SQ by Theorem 3.6. For IS ( [n+1], since IS has even cardinality,
|IS | ≤ n − 1. Recall that KS is the full-subcomplex of KBn,k

on the vertices
J ∈ VBn,k

such that |J ∩ IS | is odd. Since at most k singletons can be adjacent

in KS , the dimension of KS is less than n−1
2 + bk2 c = d− 1. �



FINITE GROUP REPRESENTATION ON REAL TORIC SPACES 1281

Example 4.5. Fix n = 11 and k = 4 or k = 5. In this case, d = 8, and λQ is
as follows:
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