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NEW BROWDER AND WEYL TYPE THEOREMS

Mohammed Berkani and Mohammed Kachad

Abstract. In this paper we introduce and study the new properties
(WΠ), (UWΠa), (UWE) and (UWΠ). The main goal of this paper is
to study relationship between these new properties and other Weyl type
theorems. Moreover, we reconsider several earlier results obtained respec-
tively in [11], [18], [14], [1] and [13] for which we give stronger versions.

1. Introduction

LetX be a Banach space, and let L(X) be the Banach algebra of all bounded
linear operators acting on X. For T ∈ L(X), we will denote by N(T ) the null
space of T , by α(T ) the nullity of T , by R(T ) the range of T , by β(T ) its defect
and by T ∗ the adjoint of T. We will denote also by σ(T ) the spectrum of T and
by σa(T ) the approximate point spectrum of T. If the range R(T ) of T is closed
and α(T ) < ∞ (resp. β(T ) < ∞), then T is called an upper semi-Fredholm
(resp. a lower semi-Fredholm) operator. If T ∈ L(X) is either upper or lower
semi Fredholm, then T is called a semi-Fredholm operator, and the index of
T is defined by ind(T ) = α(T ) − β(T ). If both of α(T ) and β(T ) are finite,
then T is called a Fredholm operator. An operator T ∈ L(X) is called a Weyl
operator if it is a Fredholm operator of index zero. The Weyl spectrum σW (T )
of T is defined by σW (T ) = {λ ∈ C | T − λI is not a Weyl operator}.

For a bounded linear operator T and a nonnegative integer n, define T[n] to
be the restriction of T to R(T n), viewed as a map from R(T n) into R(T n) (in
particular T[0] = T ). If for some integer n the range space R(T n) is closed and
T[n] is an upper (resp. a lower) semi-Fredholm operator, then T is called an
upper (resp. a lower) semi-B-Fredholm operator. A semi-B-Fredholm operator
T is an upper or a lower semi-B-Fredholm operator, and in this case the index of
T is defined as the index of the semi-Fredholm operator T[n], see [12]. Moreover
if T[n] is a Fredholm operator, then T is called a B-Fredholm operator, see
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[2]. An operator T ∈ L(X) is said to be a B-Weyl operator [4], if it is a B-
Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) of T is defined
by σBW (T ) = {λ ∈ C | T − λI is not a B-Weyl operator}.

The ascent a(T ) of an operator T is defined by a(T ) = inf{n ∈ N : N(T n) =
N(T n+1)}, and the descent δ(T ) of T , is defined by δ(T ) = inf{n ∈ N : R(T n) =
R(T n+1)}, with inf ∅ = ∞.

According to [15], a complex number λ is a pole of the resolvent of T if and
only if 0 < max (a(T − λI), δ(T − λI)) < ∞. Moreover, if this is true, then
a(T − λI) = δ(T − λI).

Define also the set LD(X) by LD(X) = {T ∈ L(X) : a(T ) < ∞ and
R(T a(T )+1) is closed} and σLD(T ) = {λ ∈ C : T − λI 6∈ LD(X)}. Following
[11], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X).
We say that λ ∈ σa(T ) is a left pole of T if T−λI ∈ LD(X), and that λ ∈ σa(T )
is a left pole of T of finite rank if λ is a left pole of T and α(T − λI) < ∞.

Let SF+(X) be the class of all upper semi-Fredholm operators and SF−

+ (X)
= {T ∈ SF+(X) : ind(T ) ≤ 0}. The upper semi-Weyl spectrum σSF

−

+
(T ) of T

is defined by σSF
−

+
(T ) = {λ ∈ C : T − λI 6∈ SF−

+ (X)}. Similarly is defined the

upper semi-B-Weyl spectrum σSBF
−

+
(T ) of T.

In Table 1, we give a list of symbols and notations we will use:
Hereafter, the symbol

⊔

stands for disjoint union, while iso(A), means iso-
lated points of a given subset A of C.

In this paper, we investigate the new properties (WΠ), (UWΠa), (UWΠ),
and (UWE), defined below, as a continuation of our previous paper [9]. Using a
new approach for the study of Weyl-type theorems based on sets differences, we
begin in the second section by the study of properties (WΠ) and (UWΠa) (See
Definition 2.1). Then, we give in Theorem 2.2 a fundamental result by showing
that T ∈ L(X) satisfies property (UWΠa) if and only if T satisfies property
(WΠ) and σW (T ) \ σSF

−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Πa(T ) \Π(T )). This theorem

is a typical result of the results obtained in this section and more generally
in this paper. The quantity σ(T ) \ σa(T ), appears to play an important role,
in the comparison between Weyl-type theorems. Following the same ideas,
we will give in Theorem 2.4 conditions for the equivalence of the properties
(WΠ) and generalized Browder’s theorem, showing also that property (WΠ)
is equivalent to the property (Bb) introduced in [20]. A similar result gives
in Theorem 2.6 conditions for the equivalence of the property (UWΠa) and
generalized a-Browder’s theorem and it shows also that property (UWΠa) and
property (SBab)) introduced in [10] are equivalent.

Then, in the first part of the third section, we study the properties (UWE)
and (UWΠ) (See Definition 3.1), and we prove in Theorem 3.2 that T satis-
fies property (UWE) if and only if T satisfies property (WE) and σW (T ) \
σSF

−

+
(T ) = σ(T ) \ σa(T ). Two other theorems linking the properties (UWE)

and (UWΠ) to usual Weyl-type theorems are also given. In the second part
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Table 1

Symbols and definitions
E(T ) : eigenvalues of T that are isolated in the spectrum σ(T ) of T,
E0(T ) : eigenvalues of T of finite multiplicity that are isolated in the spectrum σ(T ) of T,
Ea(T ) : eigenvalues of T that are isolated in the approximate point spectrum σa(T ) of T,
E0

a(T ) : eigenvalues of T of finite multiplicity that are isolated in the spectrum σa(T ) of T,
Π(T ) : poles of T,
Π0(T ) : poles of T of finite rank,
Πa(T ) : left poles of T,
Π0

a(T ) : left poles of T of finite rank,
σBW (T ) : B-Weyl spectrum of T,
σW (T ) : Weyl spectrum of T,
σSF

−

+
(T ) : upper semi-Weyl spectrum of T,

σSBF
−

+
(T ) : upper semi-B-Weyl spectrum of T,

σ(T ) \ σW (T ) = Π0(T ) : Browder’s theorem holds for T,
σ(T ) \ σW (T ) = E0(T ) : Weyl’s theorem holds for T,
σ(T ) \ σBW (T ) = Π(T ) : generalized Browder’s theorem holds for T,
σ(T ) \ σBW (T ) = E(T ) : generalized Weyl’s theorem holds for T,
σa(T ) \ σSF

−

+
(T ) = Π0

a(T ) : a-Browder’s theorem holds for T,

σa(T ) \ σSF
−

+
(T ) = E0

a(T ) : a-Weyl’s theorem holds for T,

σa(T ) \ σSBF
−

+
(T ) = Πa(T ) : generalized a-Browder’s theorem holds for T,

σa(T ) \ σSBF
−

+
(T ) = Ea(T ) : generalized a-Weyl’s theorem holds for T.

σa(T ) \ σSF
−

+
(T ) = E0(T ) : property(w) holds for T,

σa(T ) \ σSBF
−

+
(T ) = E(T ) : property(gw) holds for T.

σa(T ) \ σSF
−

+
(T ) = Π0(T ) : property(b) holds for T,

σa(T ) \ σSBF
−

+
(T ) = Π(T ) : property(gb) holds for T.

of this section, we reconsider some earlier results obtained respectively in [11],
[18], [14], [1] and [13], and we give stronger versions of those theorems. As a
sample of those results, we show that an operator T ∈ L(X), satisfies gener-
alized a-Weyl’s theorem if and only if T satisfies generalized Weyl’s theorem,
and σBW (T ) \ σSBF

−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Ea(T ) \ E(T )).

2. Properties (WΠ) and (UWΠa)

Definition 2.1. A bounded linear operator T ∈ L(X) is said to satisfy prop-
erty (WΠ), if its spectrum is the disjoint union of its Weyl spectrum and its
poles, that’s σ(T ) = σW (T )

⊔

Π(T ), and it is said to satisfy property (UWΠa),
if its approximate spectrum is the disjoint union of its upper semi-Weyl spec-
trum and its left poles, that’s σa(T ) = σSF

−

+
(T )

⊔

Πa(T ).

Theorem 2.2. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies property (UWΠa);
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(ii) T satisfies property (WΠ) and

σW (T ) \ σSF
−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Πa(T ) \Π(T )).

Proof. (i)⇒(ii) Suppose that T satisfies property (UWΠa), that’s σa(T ) =
σSF

−

+
(T )

⊔

Πa(T ). Let us prove that

σW (T ) \ σSF
−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Πa(T ) \Π(T )).

If λ ∈ σ(T ) \σa(T ), then α(T −λI) = 0 and R(T −λI) is closed in the Banach
space X. This implies that λ 6∈ σSF

−

+
(T ), and we also have λ ∈ σW (T ). Suppose

to the contrary, that’s λ 6∈ σW (T ), then α(T − λI) = β(T − λI) = 0. Hence
λ 6∈ σ(T ), and we get the desired contradiction. So λ ∈ σW (T )\σSF

−

+
(T ). Now

suppose that λ ∈ Πa(T ) \ Π(T ). Since T satisfies property (UWΠa), it follows
that λ 6∈ σSF

−

+
(T ). We have also λ ∈ σW (T ). Indeed, if λ 6∈ σW (T ), then by the

uniqueness of the index of a semi-B-Fredholm operator [12, Proposition 2.1],
we have α(T −λI) = β(T −λI) and a(T −λI) < +∞. Hence δ(T −λI) < +∞
and λ ∈ Π(T ), which is a contradiction. So λ ∈ σW (T ) \ σSF

−

+
(T ). It is clear

that (σ(T ) \ σa(T )) ∩ (Πa(T ) \ Π(T )) = ∅. Consequently, we have (σ(T ) \
σa(T ))

⊔

(Πa(T ) \ Π(T )) ⊆ σW (T ) \ σSF−

+
(T ). To show the reverse inclusion,

suppose that λ ∈ σW (T ) \ σSF
−

+
(T ). Since T satisfies property (UWΠa), then

a(T −λI) < +∞, α(T −λI) < +∞ and R(T −λI) is closed. Hence δ(T −λI) =
+∞, because otherwise we would have λ /∈ σW (T ). So if α(T − λI) = 0,
λ ∈ σ(T ) \ σa(T ), and if α(T − λI) > 0, then λ ∈ Πa(T ) \ Π(T ). Therefore
λ ∈ (σ(T ) \ σa(T ))

⊔

(Πa(T ) \Π(T )), and we have σW (T ) \ σSF
−

+
(T ) = (σ(T ) \

σa(T ))
⊔

(Πa(T ) \Π(T )), as required.
Now let us prove that T satisfies property (WΠ). As we have σ(T ) = (σ(T )\

σa(T ))
⊔

σa(T ), and since T satisfies property (UWΠa), then σ(T ) = (σ(T ) \
σa(T ))

⊔

σSF
−

+
(T )

⊔

Πa(T ).Hence σ(T ) = σSF
−

+
(T )

⊔

(σ(T )\σa(T ))
⊔

(Πa(T )\

Π(T ))
⊔

Π(T ). As we know that σW (T )\σSF
−

+
(T ) = (σ(T )\σa(T ))

⊔

(Πa(T )\

Π(T )), then σ(T ) = σW (T )
⊔

Π(T ) and T satisfies property (WΠ).
(ii)⇒(i) As σa(T ) = σLD(T )

⊔

Πa(T ), it is sufficient to prove that σLD(T )
= σSF

−

+
(T ). If λ ∈ σLD(T ), since σW (T )\σSF

−

+
(T ) = (σ(T )\σa(T ))

⊔

(Πa(T )\

Π(T )), then λ 6∈ σW (T )\σSF
−

+
(T ). As T satisfies property (WΠ), then σ(T ) =

σW (T ) \ σSF
−

+
(T )

⊔

σSF
−

+
(T )

⊔

Π(T ), and so λ ∈ σSF
−

+
(T ). It is clear that

σSF
−

+
(T ) ⊂ σLD(T ), then σa(T ) = σSF

−

+
(T )

⊔

Πa(T ) and T satisfies property

(UWΠa). �

Example 2.3. In general, we cannot expect that property (UWΠa) holds for
an operator satisfying property (WΠ). For this, let T be the operator defined on
the Banach space ℓ2(N)⊕ℓ2(N) by T = R⊕0, whereR is the unilateral right shift
operator. Then we have σa(T ) = σSF

−

+
(T ) = C(0, 1)∪{0}, σSBF

−

+
(T ) = C(0, 1)
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and Πa(T ) = {0}. Moreover, we have σ(T ) = σW (T ) = σBW (T ) = D(0, 1) and
Π(T ) = ∅. So T satisfies property (WΠ), but T does not satisfies property
(UWΠa).

An operator T ∈ L(X) satisfies property (Bb) ([20]) if

σ(T ) = σBW (T )
⊔

Π0(T ).

In the following theorem we establish a relationship between property (WΠ),
generalized Browder’s theorem and property (Bb).

Theorem 2.4. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies property (WΠ);
(ii) T satisfies generalized Browder’s theorem and σW (T ) \ σBW (T ) =

Π(T ) \Π0(T ) = ∅;
(iii) T satisfies property (Bb).

Proof. (i)⇒(ii) Suppose that T satisfies property (WΠ), that’s

σ(T ) = σW (T )
⊔

Π(T ).

Let λ ∈ σ(T ) be given. If λ ∈ σW (T ), then λ 6∈ Π(T ), and λ ∈ σBW (T ).
Indeed, if λ 6∈ σBW (T ), then T − λI is a B-Weyl operator. From [4, Theorem
2.4], if η is small enough and | η |> 0, then T − λI − ηI is a Weyl operator.
Hence λ is an isolated point in σW (T ). As σ(T ) = σW (T )

⊔

Π(T ), then λ is
an isolated point in σ(T ). From [5, Theorem 2.3], λ ∈ Π(T ), and this is a
contradiction. As we have always σBW (T ) ⊆ σW (T ), then σBW (T ) = σW (T ).
In the same way, if λ ∈ Π(T ), as σ(T ) = σW (T )

⊔

Π(T ), then λ /∈ σW (T ).
Hence α(T − λI) < ∞, and so λ ∈ Π0(T ). As we have always Π0(T ) ⊂ Π(T ),
then Π(T ) = Π0(T ). Consequently, T satisfies generalized Browder’s theorem
and σBW (T ) \ σW (T ) = Π(T ) \Π0(T ) = ∅.

(ii)⇒(iii) Obvious.
(iii)⇒(i) Assume that T satisfies property (Bb), then

σ(T ) = σBW (T )
⊔

Π0(T ).

As we have always σBW (T ) ⊂ σW (T ), then σ(T ) = σW (T )
⊔

Π0(T ). On
another way, if λ ∈ Π(T ), then λ /∈ σBW (T ). Hence Π0(T ) = Π(T ). So
σ(T ) = σW (T )

⊔

Π(T ) and T satisfies property (WΠ). �

Remark 2.5. From Theorem 2.4, if T ∈ L(X) satisfies property (WΠ), then it
satisfies generalized Browder’s theorem. However, the converse is not true in
general as seen by the following example:

Let X = ℓ2(N), let B = {ei | ei = (δji )j∈N, i ∈ N} be the canonical basis of
ℓ2(N). Let E be the subspace of ℓ2(N) generated by the set {ei | 1 ≤ i ≤ n}.
Let P be the orthogonal projection on E. Then σ(P ) = {0, 1}, σW (P ) = {0},
σBW (P ) = ∅ and Π(P ) = {0, 1}. So P satisfies generalized Browder’s theorem.
But P does not satisfy property (WΠ), since σW (P ) ∩ Π(P ) 6= ∅.
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An operator T ∈ L(X) satisfies property (SBab) (see [10]) if σa(T ) =
σSBF

−

+
(T )

⊔

Π0
a(T ). In the following theorem we establish a relationship

between property (UWΠa), generalized a-Browder’s theorem and property
(SBab).

Theorem 2.6. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies property (UWΠa);
(ii) T satisfies generalized a-Browder’s theorem and σSF

−

+
(T )\σSBF

−

+
(T ) =

Πa(T ) \Π0
a(T ) = ∅;

(iii) T satisfies property (SBab).

Proof. (i)⇒(ii) Suppose that T satisfies property (UWΠa), that’s

σa(T ) = σSF
−

+
(T )

⊔

Πa(T ).

Let λ ∈ σa(T ) be given. If λ ∈ σSF
−

+
(T ), then λ /∈ Πa(T ). We assert that λ ∈

σSBF
−

+
(T ). Indeed, if λ /∈ σSBF

−

+
(T ), then T −λI is an upper semi-B-Fredholm

operator. From [12, Corollary 3.2], if η is small enough and |η| > 0, then
T − λI − ηI is an upper semi-Fredholm operator. Hence λ is an isolated point
in σSF

−

+
(T ). As σa(T ) = σSF

−

+
(T )

⊔

Πa(T ), then λ is an isolated point in σa(T ).

From [9, Theorem 2.8 ], it follows that λ ∈ Πa(T ), which is a contradiction. As
we have always σSBF

−

+
(T ) ⊆ σSF

−

+
(T ), then σSBF

−

+
(T ) = σSF

−

+
(T ). In the same

way, if λ ∈ Πa(T ), as σa(T ) = σSF−

+
(T )

⊔

Πa(T ), then λ /∈ σSF−

+
(T ). Hence

α(T − λI) < ∞, and so λ ∈ Π0
a(T ). As we have always Π0

a(T ) ⊂ Πa(T ), then
Πa(T ) = Π0

a(T ). Consequently, T satisfies generalized a-Browder’s theorem and
σ
SF

−

+
(T ) \ σ

SBF
−

+
(T ) = Πa(T ) \Π0

a(T ) = ∅.

(ii)⇒(iii) Obvious.
(iii)⇒(i) Assume that T satisfies property (SBab), that’s

σa(T ) = σSBF
−

+
(T )

⊔

Π0
a(T ).

Then, it’s easily seen that σSBF
−

+
(T ) = σSF

−

+
(T ). As σa(T ) = σLD(T )

⊔

Πa(T ),

σSF
−

+
(T ) ⊆ σLD(T ), and Π0

a(T ) ⊂ Πa(T ), then σa(T ) = σSF
−

+
(T )

⊔

Πa(T ).

Therefore T satisfies property (UWΠa). �

The following example shows that there exist operators satisfying generalized
a-Browder’s theorem but not property (UWΠa).

Example 2.7. On ℓ2(N), let T be defined by: T (x1, x2, x3, . . .) = (0, 1
2x1, 0, 0,

. . .). Then σa(T ) = σSF
−

+
(T ) = {0} and Πa(T ) = {0}. As T is nilpotent, then

σSBF
−

+
(T ) = ∅. So T satisfies generalized a-Browder’s theorem, but T does not

satisfy property (UWΠa).
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An operator T ∈ L(X) satisfies property (WE) (resp. (UWEa)), if σ(T ) =
σW (T )

⊔

E(T ) (resp. σa(T ) = σSF
−

+
(T )

⊔

Ea(T )) (see [9] for more details).

Theorem 2.8. Let T ∈ L(X). Then the following statements are equivalent:

(i) T satisfies property (WE);
(ii) T satisfies property (WΠ), and E(T ) = Π(T ).

Proof. (i)⇒(ii) Suppose that T satisfies property (WE), that’s

σ(T ) = σW (T )
⊔

E(T ).

From [9, Remark 2.3], we have Π0(T ) = Π(T ) = E(T ). Then it follows that T
satisfies property (WΠ), and Π(T ) = E(T ).

(ii)⇒(i) Since T satisfies property (WΠ), then σ(T ) = σW (T )
⊔

Π(T ). As by
assumption Π(T ) = E(T ), so σ(T ) = σW (T )

⊔

E(T ), and T satisfies property
(WE). �

Remark 2.9. From Theorem 2.8, if T ∈ L(X), satisfies property (WE), then
it satisfies (WΠ). However the converse is not true in general. For this, let
Q ∈ L(ℓ2(N)) defined by: Q(x0, x1, . . .) = (12x2,

1
3x3, . . .) for (xn)n ∈ ℓ2(N).

Consider the operator T defined on ℓ2(N)⊕ ℓ2(N)) by T = Q⊕ 0, then σ(T ) =
σW (T ) = {0}, E(T ) = {0} and E0(T ) = Π(T ) = Π0(T ) = ∅. So T satisfies
property (WΠ), but does not satisfy property (WE).

Theorem 2.10. Let T ∈ L(X). Then the following statements are equivalent:

(i) T satisfies property (UWEa);
(ii) T satisfies property (UWΠa), and Πa(T ) = Ea(T ).

Proof. (i)⇒(ii) Suppose that T satisfies property (UWEa). Then from [9, The-
orem 3.2], and [9, Remark 3.4] T satisfies generalized a-Weyl’s theorem and
Π0

a(T ) = Πa(T ) = E0
a(T ) = Ea(T ). Thus T satisfies property (UWΠa), and

Πa(T ) = Ea(T ).
(ii)⇒(i) Obvious. �

Theorem 2.8 and Theorem 2.10 are similar respectively to [6, Theorem 2.9]
and [6, Theorem 2.10], in which conditions for the equivalence of generalized
Weyl’s (resp. generalized a-Weyl’s) theorem and Weyl’s (resp. a-Weyl’s) theo-
rem are given.

In the next theorem, and similarly to Theorem 2.2, we give precise conditions
under which the properties (UWEa) and (WE) are equivalent.

Theorem 2.11. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies property (UWEa);
(ii) T satisfies property (WE), and

σW (T ) \ σSF
−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Ea(T ) \ E(T )).
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Proof. Suppose that T satisfies property (UWEa). Using Theorem 2.10, we see
that T satisfies property (UWΠa), and Πa(T ) = Ea(T ). Then from Theorem
2.2, T satisfies property (WΠ) and σW (T )\σSF

−

+
(T ) = (σ(T )\σa(T ))

⊔

(Πa(T )\

Π(T )). Let λ ∈ E(T ), then λ ∈ Ea(T ). As Πa(T ) = Ea(T ), then λ ∈ Πa(T )
and T − λI is left Drazin invertible. Since λ is isolated in σ(T ), then from [12,
Theorem 3.1], λ ∈ Π(T ). As we have always Π(T ) ⊂ E(T ), then Π(T ) = E(T ).
As T satisfies (WΠ) and Π(T ) = E(T ), then from Theorem 2.8, T satisfies
property (WE). Moreover, taking into account that Π(T ) = E(T ) and Πa(T ) =
Ea(T ), we see that σW (T ) \ σSF

−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Ea(T ) \ E(T )).

Conversely, as T satisfies property (WE), then

σ(T ) = (σW (T ) \ σSF
−

+
(T ))

⊔

σSF
−

+
(T )

⊔

E(T ).

Since by assumption we have σW (T ) \ σSF
−

+
(T )= (σ(T ) \ σa(T ))

⊔

(Ea(T )\

E(T )), it follows that

σ(T ) = (σ(T ) \ σa(T ))
⊔

σSF
−

+
(T )

⊔

(Ea(T ) \ E(T ))
⊔

E(T ).

Therefore, we have σa(T )=σSF
−

+
(T )

⊔

Ea(T ), and T satisfies property (UWEa).

�

3. Properties (UWE) and (UWΠ)

Definition 3.1. A Bounded linear operator T ∈ L(X) is said to satisfy
property (UWE) (resp. (UWΠ)) if its approximate spectrum is the disjoint
union of its upper semi-Weyl spectrum and its isolated eigenvalues (resp. of
its upper semi-Weyl spectrum and its poles), that’s σa(T ) = σSF

−

+
(T )

⊔

E(T )

(resp. σa(T ) = σSF
−

+
(T )

⊔

Π(T )).

We start by the following result giving a characterization of operators satis-
fying property (UWE).

Theorem 3.2. Let T ∈ L(X). Then the following statements are equivalent:

(i) T satisfies property (UWE);
(ii) T satisfies property (WE), and σW (T ) \ σSF

−

+
(T ) = σ(T ) \ σa(T ).

Proof. Suppose that T satisfies property (UWE). Let λ ∈ σW (T )\σSF−

+
(T ) be

given. Then λ ∈ σ(T ), α(T − λ) < ∞ and R(T − λI) is closed. If α(T − λ) >
0, then λ ∈ σa(T ). As T satisfies property (UWE), then λ ∈ E(T ), and so
λ is an isolated point in σ(T ). From [12, Theorem 3.1 and Corollary 3.2],
we get that ind(T − λI) = 0. But this is a contradiction, since λ ∈ σW (T ).
Consequently α(T − λ) = 0, and λ ∈ σ(T ) \ σa(T ). Now if λ ∈ σ(T ) \ σa(T ),
then λ 6∈ σSF

−

+
(T ). Assume that T −λI is a Weyl operator. Since α(T −λ) = 0

then T − λI would be invertible. But this is impossible, since λ ∈ σ(T ). So
σW (T )\σSF

−

+
(T ) = σ(T )\σa(T ). As σ(T ) = (σ(T )\σa(T ))

⊔

σa(T ), and since



NEW BROWDER AND WEYL TYPE THEOREMS 447

T satisfies property (UWE), then σ(T ) = (σ(T ) \ σa(T ))
⊔

σSF
−

+
(T )

⊔

E(T ).

Hence, σ(T ) = σW (T )
⊔

E(T ) and T satisfies property (WE).
Conversely, suppose that T satisfies property (WE) and σW (T )\σSF

−

+
(T ) =

σ(T ) \ σa(T ). Then σ(T ) = (σW (T ) \ σSF
−

+
(T ))

⊔

σSF
−

+
(T )

⊔

E(T ). Therefore,

σa(T ) = σSF
−

+
(T )

⊔

E(T ), and so T satisfies property (UWE). �

The following examples show that property (UWEa) and property (UWE)
are not related to each other.

Example 3.3. Let R ∈ L(ℓ2(N)) be the unilateral right shift and let U be
defined on ℓ2(N) by U(x1, x2, . . .) = (0, x2, x3, . . .), (xn) ∈ ℓ2(N). If T =
R ⊕ U , then σ(T ) = σW (T ) = σBW (T ) = D(0, 1), the closed unit disc in
C, iso(σ(T )) = E(T ) = ∅. Moreover, we have σa(T ) = C(0, 1) ∪ {0}, where
C(0, 1) is unit circle of C, σSF

−

+
(T ) = σSBF

−

+
= C(0, 1). This implies that

σa(T ) \ σSF
−

+
(T ) = {0} and Ea(T ) = {0}. Consequently T satisfies property

(UWEa), but T does not satisfy property (UWE).

Example 3.4. Let T be defined on the Banach space ℓ2(N)⊕ℓ2(N) by T = R⊕
0, where R is the unilateral right shift operator. We have σa(T ) = σSF

−

+
(T ) =

C(0, 1)∪{0}, σSBF
−

+
(T ) = C(0, 1) and Ea(T ) = {0}.Moreover, we have σ(T ) =

σW (T ) = σBW (T ) = D(0, 1) and E(T ) = ∅. So T satisfies property (UWE),
but T does not satisfies property (UWEa).

Similarly to Theorem 3.2, we give, without proof, in the following theorem
a characterization of operators satisfying property (UWΠ).

Theorem 3.5. Let T ∈ L(X). Then the following statements are equivalent:

(i) T satisfies property (UWΠ);
(ii) T satisfies property (WΠ), and σW (T ) \ σSF

−

+
(T ) = σ(T ) \ σa(T ).

Remark 3.6. If T satisfies property (UWE), then E(T ) = E0(T ), and if T

satisfies property (UWΠ), then Π(T ) = Π0(T ).

Theorem 3.7. Let T ∈ L(X) such that T satisfies property (UWE). Then T

satisfies generalized a-Weyl’s theorem if and only if σSF
−

+
(T ) \ σSBF

−

+
(T ) =

Ea(T ) \ E(T ).

Proof. Assume that T satisfies property (UWE), then σa(T )=σSF
−

+
(T )

⊔

E(T ).

Therefore σa(T ) = σSBF
−

+
(T )

⊔

(σSF
−

+
(T ) \ σSBF

−

+
(T ))

⊔

E(T ). If T satis-

fies generalized a-Weyl’s theorem, then σa(T ) = σSBF
−

+
(T )

⊔

Ea(T ). Hence

(σSF
−

+
(T )\σSBF

−

+
(T ))

⊔

E(T ) = Ea(T ), and so σSF
−

+
(T )\σSBF

−

+
(T ) = Ea(T )\

E(T ).
Conversely, assume that T satisfies property (UWE), and

σSF
−

+
(T ) \ σSBF

−

+
(T ) = Ea(T ) \ E(T ).
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Then

σa(T ) = σSF
−

+
(T )

⊔

E(T ) = (σSF
−

+
(T ) \ σSBF

−

+
(T ))

⊔

σSBF
−

+
(T )

⊔

E(T )

= σSBF
−

+
(T )

⊔

Ea(T ).

So T satisfies generalized a-Weyl’s theorem. �

Similarly to Theorem 3.7, we give now a result linking property (UWΠ) and
generalized a-Browder’s theorem.

Theorem 3.8. Let T ∈ L(X) such that T satisfies property (UWΠ). Then T

satisfies generalized a-Browder’s theorem if and only if σSF
−

+
(T )\σSBF

−

+
(T ) =

Πa(T ) \Π(T ).

The approach based on set differences used in the previous results, appears
to be an efficient tool in studying relationship between Weyl-type theorems.
Following this path, we reconsider hereunder several results obtained respec-
tively in [11, Theorem 3.7], [11, Theorem 3.8], [18, Corollary 2.5], [14, Theorem
3.9], [1, Theorem 2.3] and [13, Theorem 2.3], for which we give stronger ver-
sions. We will give the proof of the first theorem, avoiding redundancy, we give
the others without proof. For the definitions of the different properties used
hereunder, we refer the reader to Table 1.

In [11, Theorem 3.7], it had been proved that condition (i) of the following
theorem implies the first part of its second condition (ii). Here, we obtain an
equivalence of the statements (i) and (ii).

Theorem 3.9. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies generalized a-Weyl’s theorem;
(ii) T satisfies generalized Weyl’s theorem, and σBW (T ) \ σSBF

−

+
(T ) =

(σ(T ) \ σa(T ))
⊔

(Ea(T ) \ E(T )).

Proof. Assume that T satisfies generalized a-Weyl’s theorem. Then σa(T ) =
σSBF

−

+
(T )

⊔

Ea(T ). Let λ ∈ σBW (T ) \ σSBF
−

+
(T ). If λ ∈ σa(T ), then λ ∈

Ea(T ). In this case, if λ ∈ E(T ), then from [12, Theorem 3.1], we will have
T −λI a B-Weyl operator. But this is impossible since λ ∈ σBW (T ). Therefore
λ ∈ Ea(T )\E(T ). If λ /∈ σa(T ), then λ ∈ σ(T )\σa(T ). Consequently σBW (T )\
σSBF

−

+
(T ) ⊂ (σ(T ) \ σa(T ))

⊔

(Ea(T ) \ E(T )).

Now if λ ∈ σ(T ) \ σa(T ), then T − λI is injective with closed range. Hence
λ ∈ σBW (T ) because, otherwise we would have T − λI invertible, but this
is impossible, since λ ∈ σ(T ). So λ ∈ σBW (T ) \ σSBF

−

+
(T ). Similarly, if λ ∈

Ea(T )\E(T ), as T satisfies generalized a-Weyl’s theorem, then λ /∈ σSBF
−

+
(T ).

Since λ /∈ E(T ), necessarily λ ∈ σBW (T ). Indeed, if λ 6∈ σBW (T ), then T − λI

is a B-Weyl operator. From [4, Theorem 2.4], if η is small enough and |η| > 0,
then T − λI − ηI is a Weyl operator. As λ ∈ Ea(T ), then if η is chosen small
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enough, we would have α(T −λI− ηI) = 0. As T −λI − ηI is a Weyl operator,
then β(T−λI−ηI) = 0, and T−λI−ηI is invertible. But this is a contradiction,
since λ /∈ E(T ). Consequently, λ ∈ σBW (T ), and σBW (T ) \ σSBF

−

+
(T ) =

(σ(T ) \ σa(T ))
⊔

(Ea(T ) \ E(T )). As σ(T ) = σa(T )
⊔

(σ(T ) \ σa(T ), then

σ(T ) = σSBF
−

+
(T )

⊔

Ea(T )
⊔

(σ(T ) \ σa(T )

= σSBF−

+
(T )

⊔

E(T )
⊔

(Ea(T ) \ E(T ))
⊔

(σ(T ) \ σa(T )

= σSBF
−

+
(T )

⊔

E(T )
⊔

(σBW (T ) \ σSBF
−

+
(T ))

= σBW (T )
⊔

E(T ).

Therefore T satisfies generalized Weyl’s theorem.
Conversely, assume that T satisfies generalized Weyl’s theorem, and

σBW (T ) \ σSBF
−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Ea(T ) \ E(T )).

Then

σ(T ) = σa(T )
⊔

(σ(T ) \ σa(T )

= σBW (T )
⊔

E(T )

= (σBW (T ) \ σSBF−

+
(T ))

⊔

σSBF−

+
(T )

⊔

E(T )

= (σ(T ) \ σa(T ))
⊔

(Ea(T ) \ E(T ))
⊔

σSBF
−

+
(T )

⊔

E(T )

= (σ(T ) \ σa(T ))
⊔

σSBF
−

+
(T )

⊔

Ea(T ).

Hence σa(T ) = σSBF
−

+
(T )

⊔

Ea(T ), and T satisfies generalized a-Weyl’s theo-

rem. �

In the following example, we define an operator T which satisfies generalized
Weyl’s theorem and property (UWE), but T does not satisfies generalized a-
Weyl’s theorem, nor property (UWEa).

Example 3.10. Let T be the operator defined on the Banach space ℓ2(N) ⊕
ℓ2(N)⊕ ℓ1(N) by T = R⊕ 0⊕Q, where R is the unilateral right shift operator
and Q the operator defined by x = (ξi) ∈ l1 by:

Q(ξ1, ξ2, ξ3, . . . , ξk, . . . ) = (0, α1ξ1, α2ξ2, . . . , αk−1ξk−1, . . . ),

where (αi) is a sequence of complex numbers such that 0 < |αi| ≤ 1 and
∑

∞

i=1 |αi| < ∞. We observe that R(Qn) 6= R(Qn), n = 1, 2, . . . Indeed, for a

given n ∈ N let x
(n)
k = (1, . . . , 1, 0, 0, . . . ) (with n+ k times 1). Then the limit

y(n) = limk→∞ Qnx
(n)
k exists and lies in R(Qn). However, there is no element

x(n) ∈ ℓ1 satisfying the equation Qnx(n) = y(n) as the algebraic solution to this
equation is (1, 1, 1, . . . ) /∈ ℓ1.
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We have σa(T ) = σSF
−

+
(T ) = C(0, 1) ∪ {0}, σSBF

−

+
(T ) = C(0, 1) ∪ {0}

and Ea(T ) = {0}. Moreover, we have σ(T ) = σW (T ) = σBW (T ) = D(0, 1)
and E(T ) = ∅. So T satisfies generalized Weyl’s theorem, but T does not
satisfies generalized a-Weyl’s theorem. We note that σBW (T ) \ σSBF−

+
(T ) 6=

(σ(T ) \ σa(T ))
⊔

(Ea(T ) \ E(T )).

In [11, Theorem 3.8] it had been proved that condition (i) of the following
theorem implies the first part of its second condition (ii). Here, we obtain an
equivalence of the statements (i) and (ii).

Theorem 3.11. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies generalized a-Browder’s theorem;
(ii) T satisfies generalized Browder’s theorem, and σBW (T ) \ σSBF−

+
(T ) =

(σ(T ) \ σa(T ))
⊔

(Πa(T ) \Π(T )).

In [18, Corollary 2.5] it had been proved that condition (i) of the following
theorem implies the first part of its second condition (ii). Here, we obtain an
equivalence of the statements (i) and (ii).

Theorem 3.12. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies a-Weyl’s theorem;
(ii) T satisfies Weyl’s theorem, and

σW (T ) \ σSF
−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(E0
a(T ) \ E

0(T )).

In [14, Theorem 3.9] it had been proved that condition (i) of the following
theorem implies the first part of its second condition (ii). Here, we obtain an
equivalence of the statements (i) and (ii).

Theorem 3.13. Suppose that T ∈ L(X). Then the following statements are

equivalent:

(i) T satisfies a-Browder’s theorem;
(ii) T satisfies Browder’s theorem, and

σW (T ) \ σSF
−

+
(T ) = (σ(T ) \ σa(T ))

⊔

(Π0
a(T ) \Π

0(T )).

In [1, Theorem 2.3] it had been proved that condition (i) of the following
theorem implies the first part of its second condition (ii). Here, we obtain an
equivalence of the statements (i) and (ii).

Theorem 3.14. Let T ∈ L(X). Then the following statements are equivalent:

(i) T satisfies property (gw);
(ii) T satisfies property (w), and σSF

−

+
(T ) \ σSBF

−

+
(T ) = E(T ) \ E0(T ).
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In [13, Theorem 2.3] it had been proved that condition (i) of the following
theorem implies the first part of its second condition (ii). Here, we obtain an
equivalence of the statements (i) and (ii).

Theorem 3.15. Let T ∈ L(X). Then the following statements are equivalent:

(i) T satisfies property (gb);
(ii) T satisfies property (b), and σSF−

+
(T ) \ σSBF−

+
(T ) = Π(T ) \Π0(T ).
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