• Title/Summary/Keyword: Weyl

Search Result 142, Processing Time 0.027 seconds

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

R-CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.193-203
    • /
    • 2002
  • Weyl structure can be viewed as generalizations of Riemannian metrics. We study Weyl structures which are critical points of the squared L$^2$ norm functional of the full curvature tensor, defined on the space of Weyl structures on a compact 4-manifold. We find some relationship between these critical Weyl structures and the critical Riemannian metrics. Then in a search for homogeneous critical structures we study left-invariant metrics on some solv-manifolds and prove that they are not critical.

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik;Pyo, Yong-Soo;Shin, Young-Lim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.503-515
    • /
    • 2011
  • Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.

4-DIMENSIONAL CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.551-564
    • /
    • 2001
  • We view Weyl structures as generalizations of Riemannian metrics and study the critical points of geometric functional which involve scalar curvature, defined on the space of Weyl structures on a closed 4-manifold. The main goal here is to provide a framework to analyze critical Weyl structures by defining functionals, discussing function spaces and writing down basic formulas for the equations of critical points.

  • PDF

WEYL'S THEOREM FOR ISOLOID AND REGULOID OPERATORS

  • Kim, An-Hyun;Yoo, Sung-Uk
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1999
  • In this paper we find some classes of operators for which Weyl`s theorem holds. The main result is as follows. If T$\in$L(\ulcorner) satisfies the following: (ⅰ) Either T or T\ulcorner is reduced by each of its eigenspaces; (ⅱ) Weyl`s theorem holds for T; (ⅲ) T is isoloid, then for every polynomial p, Weyl`s theorem holds for p(T).

  • PDF

GRADIENT ALMOST RICCI SOLITONS WITH VANISHING CONDITIONS ON WEYL TENSOR AND BACH TENSOR

  • Co, Jinseok;Hwang, Seungsu
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.539-552
    • /
    • 2020
  • In this paper we consider gradient almost Ricci solitons with weak conditions on Weyl and Bach tensors. We show that a gradient almost Ricci soliton has harmonic Weyl curvature if it has fourth order divergence-free Weyl tensor, or it has divergence-free Bach tensor. Furthermore, if its Weyl tensor is radially flat, we prove such a gradient almost Ricci soliton is locally a warped product with Einstein fibers. Finally, we prove a rigidity result on compact gradient almost Ricci solitons satisfying an integral condition.

ON WEIGHTED WEYL SPECTRUM, II

  • Arora Subhash Chander;Dharmarha Preeti
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.715-722
    • /
    • 2006
  • In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then $Re\;{\omega}^0_{\alpha}(T)\;{\subset}\;{\omega}^0_{\alpha}(Re\;T)$, where ${\omega}^0_{\alpha}(T)$ is the weighted Weyl spectrum of weight a with ${\alpha}\;with\;{\aleph}_0{\leq}{\alpha}{\leq}h:=dim\;H$. We also give some conditions under which the product of two ${\alpha}-Weyl$ operators is ${\alpha}-Weyl$ and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.

Conditions on Operators Satisfying Weyl's Theorem

  • Kim, An-Hyun
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.75-82
    • /
    • 2003
  • In this note it is shown that if T satisfies ($G_{1}$)-condition with finite spectrum then Weyl's theorem holds for T. If T is totally *-paranormal then $T-{\lambda}$ has finite ascent for all ${\lambda}{\in}{\mathbb{C}},\;T$ is isoloid, and Weyl's theorem holds for T.

  • PDF

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.