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GRADIENT ALMOST RICCI SOLITONS WITH VANISHING

CONDITIONS ON WEYL TENSOR AND BACH TENSOR

Jinseok Co and Seungsu Hwang

Abstract. In this paper we consider gradient almost Ricci solitons with

weak conditions on Weyl and Bach tensors. We show that a gradient
almost Ricci soliton has harmonic Weyl curvature if it has fourth order

divergence-free Weyl tensor, or it has divergence-free Bach tensor. Fur-
thermore, if its Weyl tensor is radially flat, we prove such a gradient

almost Ricci soliton is locally a warped product with Einstein fibers. Fi-

nally, we prove a rigidity result on compact gradient almost Ricci solitons
satisfying an integral condition.

1. Introduction

The concept of almost Ricci solitons was introduced by Pigola, Rigoli, Ri-
moldi, and Setti as a generalization of Ricci solitons in [17]. An n-dimensional
Riemannian manifold (M, g) is an almost Ricci soliton if there exit a vector
field X and a smooth function λ : M → R such that

rg +
1

2
LXg = λg,

where rg is the Ricci tensor of the metric g and L is the Lie derivative. If the
vector field X is given by the gradient of a smooth function f : M → R, the
manifold is called a gradient almost Ricci soliton. In this case, we have

rg +Dgdf = λg,(1.1)

where Dgdf is the Hessian of f . When λ is constant, this is the usual gradi-
ent Ricci soliton. And we say the Ricci soliton (M, g, λ) is shrinking, steady,
expanding if λ > 0, = 0, < 0, respectively. A gradient almost Ricci soliton has
been studied in [2], where Barros and Ribeiro derived several useful identities
on structure for almost Ricci solitons which generalize corresponding equivalent
for Ricci solitons. In particular, using these identities, they show an integral
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formula for compact gradient almost Ricci solitons which enables to obtain a
rigidity result. In other words, they proved that a compact nontrivial gradient
almost Ricci soliton is isometric to a sphere provided either it has constant
scalar curvature or it satisfies an integral condition given by the potential func-
tions.

On the other hand, since classifying complete gradient Ricci solitons in
higher dimension is more difficult than 3-dimension, some recent work has
focused on complete gradient Ricci solitons with vanishing Weyl tensor. For
example, in [19], Z.-H. Zhang proved that any complete gradient shrinking soli-
ton with vanishing Weyl tensor must be a finite quotient of Rn, Sn−1 × R, or
Sn. This is a generalization of 3-dimensional case due to Cao et al. in [5] or
Chen in [11]. Note that a 3-dimensional manifold automatically has vanishing
Weyl tensor, and for n ≥ 4, a metric is locally conformally flat if the Weyl
tensor W vanishes.

In case of gradient steady Ricci solitons vanishing Weyl tensor, H.-D. Cao
and Q. Chen proved that any n-dimensional complete noncompact locally con-
formally flat gradient steady Ricci soliton is either flat or isometric to the
Bryant soliton ([6]). For n ≥ 3, R. Bryant proved that there exists, up to scal-
ing, a unique complete rotationally symmetric gradient Ricci soliton on Rn.
For details, see, e.g., Chow et al. in [12].

There has been various vanishing conditions on the Weyl tensor. A Riemann-
ian manifold (M, g) is said to have harmonic Weyl curvature if δW = 0. In
[13] and [16], M. Fernández-López and E. Garćıa-Ŕıo, and O. Munteanu and
N. Sesum proved that any n-dimensional complete gradient shrinking Ricci
soliton with harmonic Weyl tensor is a finite quotient of Rn, Sn−1 × R, or Sn.
Related to gradient almost Ricci solitons with harmonic Weyl tensor, G. Catino
proved the following result.

Theorem 1.1 ([9]). Let (M, g,∇f, λ) be an n-dimensional gradient almost
Ricci soliton with harmonic Weyl tensor, n ≥ 3, and W(·, ·, ·,∇f) = 0. Then,
around any regular point of f , the manifold (M, g) is locally a warped product
with (n− 1)-dimensional Einstein fibers.

In [14], the second author and G. Yun proved that if (M, g, f) is a compact
gradient shrinking Ricci soliton satisfying δW(·, ·,∇f) = 0, then (M, g) is Ein-
stein. In noncompact case, they also showed that if (M, g) is complete and
satisfies this weakly harmonic Weyl curvature condition, then (M, g) is rigid
in the sense that M is given by a quotient of product of an Einstein manifold
with Euclidean space.

In order to find a weaker vanishing condition on the Weyl tensor, Catino,
Mastrolia, and Monticelli ([10]) introduced a fourth order vanishing condition
on the Weyl tensor as follows:

div4W = ∇k∇l∇j∇iWikjl.
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Under the condition that div4W = 0, they classified gradient shrinking Ricci
solitons for n ≥ 4. Their result clearly generalized previous results concerning
gradient shrinking solitons with harmonic Weyl curvature.

In the case of steady and expanding solitons, under natural Ricci curva-
ture assumptions, they showed that the solitons has harmonic Weyl curvature.
Namely, they proved the followings.

Theorem 1.2 ([10]). Let (M, g) be an n-dimensional complete gradient steady
Ricci soliton, n ≥ 4, with positive Ricci curvature and such that the scalar
curvature attains its maximum at some point. If div4W = 0, then (M, g) has
harmonic Weyl curvature.

Theorem 1.3 ([10]). Let (M, g) be an n-dimensional complete gradient ex-
panding Ricci soliton with nonnegative Ricci curvature, n ≥ 4. If div4W = 0,
then (M, g) has harmonic Weyl curvature.

In this paper, we consider gradient almost Ricci solitons with a fourth order
vanishing condition on the Weyl tensor, and prove some structural properties
which generalize previous results mentioned above. Throughout the paper, we
will assume that n ≥ 4.

First, we prove that a gradient almost Ricci soliton has harmonic Weyl
curvature if div4W = 0 for n ≥ 4.

Theorem 1.4. Let (M, g,∇f, λ) be an n-dimensional gradient almost Ricci
soliton with div4W = 0 such that f is bounded below. Assume either each
level set of f is compact, or f has polynomial growth at infinity. Then M has
harmonic Weyl curvature.

Note that if (M, g, f) is a complete shrinking Ricci soliton with positive
constant λ, then f is bounded below. This easily follows from the facts that

sg + |∇f |2 − 2λf = C0,

where C0 is some constant and the scalar curvature sg is nonnegative (cf. see
Lemma 2.2 of [8]). However, for almost gradient Ricci solitons, there is neither
a lower bound for f nor λ and sg are necessarily nonnegative. Therefore, we
need some bounded condition on f .

Also it should be noted that a potential function was characterized under the
nonnegativity of the Ricci curvature in [4] and [10]. However, such conditions
were not required in Theorem 1.4. We only required a potential function, which
has polynomial growth at infinity and is bounded below.

As a consequence, we have the following result (cf. [18]).

Corollary 1.5. Let (Mn, g,∇f, λ), n ≥ 4, be an n-dimensional compact gra-
dient almost Ricci soliton with div4W = 0. Then M has harmonic Weyl
curvature.

As applications of our main results, we have the following structural results
which generalize a result in [9].
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Theorem 1.6. Let (M, g,∇f, λ) be an n-dimensional gradient almost Ricci
soliton with div4W = 0 such that f is bounded below. Assume either each level
set of f is compact, or f has polynomial growth at infinity. IfW(·, ·, ·,∇f) = 0,
then (M, g) is locally a warped product with (n−1)-dimensional Einstein fibers.

Corollary 1.7. Let (M, g,∇f, λ) be an n-dimensional compact gradient almost
Ricci soliton with div4W = 0. If W(·, ·, ·,∇f) = 0, then (M, g) is locally a
warped product with (n− 1)-dimensional Einstein fibers.

Next, we consider gradient almost Ricci solitons with divergence-free Bach
tensor. The Bach tensor discussed first by Bach in [1] is deeply related to
general relativity and conformal geometry (cf. [15]). In dimension n = 4, it is
well-known ([3]) that the Bach tensor is conformally invariant, and arises as a
gradient of the total Weyl curvature functional which is given by the integral
of the square norm of Weyl tensor. The Bach tensor B of an n-dimensional
Riemannian manifold (Mn, g), n ≥ 4, is defined by

B = − 1

n− 3
δDdivW +

1

n− 2
W̊rg,(1.2)

where δD is L2 adjoint of dD, and W̊rg is defined by

W̊rg(X,Y ) =

n∑
i=1

rg(W(X,Ei)Y,Ei)

for some orthonormal basis {Ei}ni=1. Recall that rg is the Ricci tensor of g. It
is easy to observe that if (M, g) is either locally conformally flat or Einstein,
then it is Bach-flat, i.e., B = 0. As classifications for gradient Ricci solitons
with vanishing Weyl tensor or harmonic Weyl tensor are known, many results
on gradient Ricci solitons with Bach-flat are proved (cf. [4, 7]).

A Riemannian manifold (M, g) is said to have divergence-free Bach tensor if
divB = 0. This condition is clearly a generalization of Bach flatness condition.
Applying [18], we can obtain the following.

Theorem 1.8. Let (M, g,∇f, λ) be an n-dimensional complete gradient almost
Ricci soliton with divergence-free Bach tensor satisfying W(·, ·, ·,∇f) = 0. As-
sume that each level set of f is compact. Then either (M, g) is Einstein, or is
locally a warped product with (n−1)-dimensional Einstein fibers. In particular,
(M, g) has harmonic Weyl curvature.

Finally, we prove the following rigidity result for compact gradient almost
Ricci solitons.

Theorem 1.9. Let (M, g,∇f, λ) be an n-dimensional compact gradient almost
Ricci soliton satisfying T = 0. If

∫
M
s2g dvg ≤ n

∫
M
λsgdvg, then (M, g) is

isometric to an Euclidean sphere Sn(r).
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2. Preliminaries

In this section, we introduce various notations and derive several identities
on an n-dimensional Riemannian manifold M for n ≥ 3. From now on, we
will denote rg and sg by r and s, respectively, for simplicity and convenience
if there are no ambiguities.

From Riemannian curvature decomposition, the Weyl curvature tensor is
given by

Wijkl = Rijkl −
1

n− 2
(gikrjl − gilrjk − gjkril + gjlrik)(2.1)

+
s

(n− 1)(n− 2)
(gikgil − gilgjk),

where rij = r(Ei, Ej).
The differential operator dD from C∞(S2M) to C∞

(
Λ2M ⊗ T ∗M

)
is de-

fined by

dDη(X,Y, Z) = (DXη)(Y,Z)− (DY η)(X,Z)

for η ∈ C∞(S2M) and vectors X, Y , and Z. For a function ϕ ∈ C∞(M) and
η ∈ C∞(S2M), dϕ ∧ η is defined by

(dϕ ∧ η)(X,Y, Z) = dϕ(X)η(Y, Z)− dϕ(Y )η(X,Z),

where dϕ denotes the total differential of ϕ. Then, Cotton tensor C ∈ Γ(Λ2M⊗
T ∗M) is defined by

C = dDr − 1

2(n− 1)
ds ∧ g,(2.2)

where s is the scalar curvature of g. It is skew-symmetric for the first two
indices and trace free for all other indices, and it satisfies

Cijk + Cjki + Ckij = 0.(2.3)

When n = 3, it is well known that a metric g is conformally flat if and only if
C = 0. The Cotton and Weyl tensors are related by

(2.4) C =
n− 2

n− 3
divW.

Thus we have

div3 C =
n− 2

n− 3
div4W.(2.5)

Finally, we define the covariant 3-tensor T introduced in [7, 3.2] by

(n− 2)T = df ∧ r +
1

n− 1
i∇fr ∧ g −

s

n− 1
df ∧ g.(2.6)

Then T is skew-symmetric for first two indices and trace free for any other
indices.
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The following is a well-known equation for gradient almost Ricci soliton
[18, Proposition 2.2] or [7, Lemma 3.1]. We briefly summarize its proof. We
denote the interior product ĩ to the final factor by

ĩξω(X,Y, Z) = ω(X,Y, Z, ξ)

for a 4-tensor ω and a vector field ξ.

Lemma 2.1. Let (M, g,∇f, λ) be an n-dimensional almost gradient Ricci soli-
ton. Then we have

(2.7) C + ĩ∇fW = T.

Proof. By taking dD to (1.1), we have

dDr + ĩ∇fR = dλ ∧ g,

where R is the Riemann full tensor. Thus, we get

C + ĩ∇fR = dλ ∧ g − 1

2(n− 1)
ds ∧ g.(2.8)

From the decomposition of the Riemann tensor given by (2.1), we have

dDr + ĩ∇fW −
1

n− 2
i∇fr ∧ g +

s

(n− 1)(n− 2)
df ∧ g − 1

n− 2
df ∧ r = dλ ∧ g.

By the definition of the Cotton tensor and T ,

(2.9) C + ĩ∇fW = T +
1

n− 1
i∇fr ∧ g −

1

2(n− 1)
ds ∧ g + dλ ∧ g.

On the other hand, by taking the trace of (1.1) we get

s+ ∆f = nλ,

implying that

ds+ d∆f = ndλ.

By taking the divergence of (1.1) we have

−1

2
ds− d∆f − i∇fr = −dλ.

By adding the last two equations, we have

1

2
ds− i∇fr = (n− 1)dλ.(2.10)

Our Lemma follows by substituting this equation into (2.9). �

We also have the following result (cf. [7, Lemma 5.1]).

Proposition 2.2.

div2 C(X) =
1

2
〈̃iXR,C〉.
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Proof. Recall that Schouten tensor A is defined by

A = rg −
s

2(n− 1)
g.

Note that

δδC(X) = δδdDA(X)

= DEi
DEk

(DEk
A(Ei, X)−DEi

A(Ek, X))

= (DEi
DEk

−DEk
DEi

)DEk
A(Ei, X).

Since

D3
X,Y,Zh−D3

Y,X,Zh = −R(X,Y )DZh+DR(X,Y )Zh

for any tensor h (see Corollary 1.22 of [3]), we have

div2 C(X) = R(Ek, Ei)DEk
A(Ei, X)−DR(Ek,Ei)Ek

A(Ei, X)

= −DEk
A(R(Ek, Ei)Ei, X)−DEk

A(Ei, R(Ek, Ei)X)

− risDEs
A(Ei, X)

= rkjDEk
A(Ej , X) + 〈R(Ek, Ei)Es, X〉DEk

A(Ei, Es)

− rikDEk
A(Ei, X)

=
1

2
〈R(Ek, Ei)Es, X〉C(Ek, Ei, Es). �

Consequently, using (2.8) and Proposition 2.2 we have

div2 C(∇f) =
1

2
〈̃i∇fR,C〉

=
1

2
〈dλ ∧ g − 1

2(n− 1)
ds ∧ g − C,C〉 = −1

2
|C|2,(2.11)

since C is trace free in any two indices. Equation (2.11) is known to be true
when n = 3 (cf. [10]). Here, we proved (2.11) for n ≥ 4.

Now we briefly discuss the boundness of f . Let Λ = s + |∇f |2 − 2λf . It is
well known that Λ is constant when (M, g) is a gradient Ricci soliton. However,
this is not true in the case of an almost Ricci soliton. Suppose that λ > 0 and
s is bounded below on M . From the equations derived above, we have

∇(s+ |∇f |2 − 2λf) = ((n− 1)− f)∇λ.

Thus, if there exists a maximum point of s + |∇f |2 − 2λf , then f is bounded
below. However, once λ takes both positive and negative values on M , the
lower boundness of f depends deeply on s, λ, and Λ.

Finally, we have the following equation for the divergence of the Bach tensor
B.

Lemma 2.3 ([7, Lemma 5.1]). For any vector field X we have

(n− 2) divB(X) =
n− 4

n− 2
〈iXC, z〉.
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3. Proof of Theorems 1.4 and 1.6

First, to prove Theorem 1.4, it suffices to prove that C vanishes identically
on all of M .

First, assume that each level set of f is compact. For a specific value of t,
let Mt = {x ∈M | f(x) < t}. From the assumption on f ,∫

Mt

div
(
(f − t) div2 C

)
is finite. When t is a regular value of f , N = ∇f/|∇f | is well-defined, hence,∫

Mt

div
(
(f − t) div2 C

)
=

∫
∂Mt

(f − t) div2C(N) = 0.

Since

div
(
(f − t) div2 C

)
= div2 C(∇f) + (f − t) div3 C,

from the assumption that div3 C = 0 and (2.11) we have∫
Mt

div
(
(f − t) div2 C

)
=

∫
Mt

div2 C(∇f) = −1

2

∫
Mt

|C|2.

Hence, C = 0 on Mt for any regular value t of f . Since t is arbitrary, we may
conclude that C = 0 on all of M by continuity.

Next, assume that f has polynomial growth at infinity. In this case, we
prove Theorem 1.4 by using the standard cut off function method. Choose
ψ(f) = e−fφ(f), where for any fixed s > 0, φ : R → R is a nonnegative C3

function such that φ ≡ 1 on [0, s], φ ≡ 0 on [2s,∞) and φ′ ≤ 0 on [s, 2s]. From
the assumption that f has polynomial growth at infinity, for every s > 0, the
cutoff function ψ(f) has compact support in M , and by (2.11) and integrating
by parts we obtain

1

2

∫
M

|C|2e−fφ(f) = −
∫
M

div2 C(Ek)e−fφ(f)∇kf

=

∫
M

div2C(Ek)(e−f )kφ(f)

= −
∫
M

(
div3 C e−fφ(f) + div2 C(∇f)e−fφ′(f)

)
=

1

2

∫
M

|C|2e−fφ′(f).

Since φ′(f) ≤ 0, we may conclude that C = 0 on M . This completes the proof
of Theorem 1.4.

For the proof of Theorem 1.6, first note that the manifold M has harmonic
Weyl curvature by Theorem 1.4. Then, by Theorem 1.1 or following the proof
of Theorem 4.7 in [18], we may conclude that (M, g) is locally a warped product
with (n− 1)-dimensional Einstein fibers.
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4. Proof of Theorem 1.8

In this section we prove Theorem 1.8. Let (M, g,∇f, λ) be an n-dimensional
gradient almost Ricci soliton. Note that, by the definition T is trace free in
any two indices, and so

|T |2 =
1

n− 2
〈T, df ∧ r〉 =

2

(n− 2)
〈i∇fT, r〉,(4.1)

where iX is the usual interior product with respect to X. In particular, if
T = 0, we have the following result.

Lemma 4.1 ([18, Lemma 3.3 and Lemma 4.2]). Assume that T = 0. Then,
for X orthogonal to ∇f ,

r(∇f,X) = 0.(4.2)

Let α = r(N,N) with N = ∇f/|∇f |. Moreover, we have

0 =
ns− (n− 1)2λ− α

n− 1
r−∇∇fr − r ◦ r

+
n− 3

2(n− 1)
df ⊗ ds+

1

n− 1
df ⊗ dα

+
1

n− 1
(ds(f)− df(α) + s+ (n− 1)λ(α− s))g.(4.3)

Here, for arbitrary vector fields X and Y , r ◦ r is defined by

r ◦ r =

n∑
i=1

r(X,Ei)r(Ei, Y ),

where {Ei}ni=1 is an orthonormal frame.

Proof. From the definition of T , for X orthogonal to ∇f we have

(n− 2)T (∇f,X,∇f) =
n− 2

n− 1
r(∇f,X)|∇f |2.

Thus, (4.2) follows from the assumption that T = 0. In particular, i∇fr = αdf .
Therefore,

div (i∇fr ∧ g) = df(α)g + ((n− 1)λ+ s)αg − df ⊗ dα+ α r.

Moreover,

div (df ∧ r) = ((n− 1)λ− s)r +D∇fr + r ◦ r − 1

2
df ⊗ ds,

and

div (s df ∧ g) = df(s)g + s((n− 1)λ− s)g − df ⊗ ds+ s r.

Hence,

(n− 2) divT =
(n− 1)2λ+ α− ns

n− 1
r +D∇frg + r ◦ r



548 J. CO AND S. HWANG

− n− 3

2(n− 1)
df ⊗ ds− 1

n− 1
df ⊗ dα

+
1

n− 1
(df(α)− df(s)− s+ (n− 1)λ(α− s))g.

Thus, (4.3) follows from divT = 0. �

Consequently, we have

r ◦ r(∇f,∇f) = α2|∇f |2,(4.4)

where α = r(N,N) with N = ∇f/|∇f |.

Corollary 4.2. Let (M, g,∇f, λ) be an n-dimensional gradient almost Ricci
soliton. Assume that T = 0. Then, |∇f |2, (n − 3)s + 2α, s + 2(1 − n)α, and
s+ 2(1− n)λ are constant on each level set of f .

Proof. From (4.2), for X orthogonal to ∇f we have

1

2
X(|∇f |2) = 〈DXdf,∇f〉 = λ df(X)− r(X,∇f) = 0.

Moreover, by putting (X,∇f) in (4.3) with divT = 0

D∇fr(X,∇f) = 0.

Now, by putting (∇f,X) in (4.3) with divT = 0 again, we get

0 = − n− 3

2(n− 1)
|∇f |2ds(X)− 1

n− 1
|∇f |2dα(X),

since r(X,∇f) = 0 and

D∇fr(∇f,X) = D∇fr(X,∇f).

On the other hand, from (2.7) we have

C(X,∇f,∇f) = −W(X,∇f,∇f,∇f) + T (X,∇f,∇f) = 0

= DXr(∇f,∇f)− 1

2(n− 1)
ds(X)|∇f |2.

Thus, from

r(DXdf,∇f) = λ r(X,∇f)− r ◦ r(X,∇f) = 0,

it follows that

X(α) =
1

|∇f |2
X(r(∇f,∇f))

=
1

|∇f |2
(DXr(∇f,∇f) + 2r(DXdf,∇f)) =

1

2(n− 1)
ds(X).

This implies that s+ 2(1− n)α is constant on each level sets of f .
Finally, by taking the trace of (1.1)

s+ ∆f = nλ
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and hence,

ds+ d∆f = ndλ.

Moreover, by putting a vector X orthogonal to ∇f into (2.10) we get

1

2
ds(X) = (n− 1)dλ(X).

�

By Corollary 4.2, we may conclude that s, α, and λ are constant on each
regular level set of f .

Corollary 4.3 ([18, Lemma 4.6]). Let (M, g,∇f, λ) be an n-dimensional gra-
dient almost Ricci soliton. Assume that T = 0. Then the Ricci tensor has two
eigenvalues.

Proof. Let {Ei}, where 1 ≤ i ≤ n, be an orthonormal frame with En = N =
∇f/|∇f | and α = r(N,N). Considering the second fundamental form of each
level set of f , we have

(4.5) IIij = 〈∇Ei
N,Ej〉 =

1

|∇f |
Ddfij =

1

|∇f |
(λgij − rij)

and

tr II = m =
n− 1

|∇f |

(
λ+

α− s
n− 1

)
.

Thus, for each level set of f , the mean curvature m is constant, and∣∣∣∣II − m

n− 1
g

∣∣∣∣2 = |II|2 − m2

n− 1

=
1

|∇f |2
〈λgij − rij , λgij − rij〉 −

n− 1

|∇f |2

(
λ+

α− s
n− 1

)2

=
1

|∇f |2
{(n− 1)λ2 − 2λ(s− α) + |r|2 − α2 − λ2(n− 1)

− (α− s)2

n− 1
− 2λ(α− s)}

=
1

|∇f |2
{|r|2 − n

n− 1
α2 +

2sα

n− 1
− s2

n− 1
}.

Note that

n− 2

2
|T |2 = 〈i∇fT, r〉

= |r|2|∇f |2 − n

n− 1
r ◦ r(∇f,∇f) +

2s

n− 1
r(∇f,∇f)− s2

n− 1
|∇f |2.(4.6)

Thus, by (4.4)

|T |2 =
2

(n− 2)2
|∇f |4

∣∣∣∣II − m

n− 1
g

∣∣∣∣2.
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It follows from T = 0 that

(4.7) IIij =
m

n− 1
gij .

Therefore, we may conclude that

(4.8) rij =
s− α
n− 1

gij

for 1 ≤ i, j ≤ n− 1. �

To prove Theorem 1.9, we need the following.

Theorem 4.4 ([2, Corollary 1]). Let (M, g,∇f, λ) be an n-dimensional com-
pact gradient almost Ricci soliton. If either s is constant, or the following
inequality ∫

M

{r(∇f,∇f) + (n− 1)〈∇λ,∇f〉} dvg ≤ 0

holds, then (M, g) is isometric to an Euclidean sphere Sn(r).

To prove Theorem 1.9, we have∫
M

{r(∇f,∇f)+(n−1)〈∇λ,∇f〉} dvg=

∫
M

{
α|∇f |2+(n−1)〈∇λ,∇f〉

}
dvg.

Then, by (2.10) we have

(n− 1)〈∇λ,∇f〉+ α|∇f |2 =
1

2
〈∇s,∇f〉.

Hence, from the assumption T = 0 together with the fact ∆f = nλ− s,∫
M

{r(∇f,∇f) + (n− 1)〈∇λ,∇f〉} dvg =
1

2

∫
M

〈∇s,∇f〉 dvg

= −1

2

∫
M

s∆fdvg

= −1

2

∫
M

s(nλ− s)dvg ≤ 0.

The proof of Theorem 1.9 follows from Theorem 4.4.
Now, we are ready to prove Theorem 1.8. First, taking an inner product

with a Ricci tensor on both sides of (2.7), we get

〈iXC, r〉+ 〈iX ĩ∇fW, r〉 = 〈iXT, r〉.(4.9)

Also, by Lemma 2.3

n− 4

(n− 2)2
〈i∇fC, r〉 = divB(∇f) = 0.(4.10)

Thus, by substituting (4.9) with the assumption that W(·, ·, ·,∇f) = 0 into
(4.10) we have

〈i∇fT, r〉 = 0.
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In particular, by (4.1) we have T = 0. Hence, from

C + ĩ∇fW = T,

we have C = 0. In other words, M has harmonic Weyl curvature. Moreover,
since

0 = div (̃i∇fW)(X,Y ) =
n− 3

n− 2
C(Y,∇f,X) + W̊r(X,Y )

(cf. [18, Section 3]), we have W̊r = 0. Hence, (1.2) and (2.4) imply that g is
Bach-flat. By taking h = 1 in Theorem 1.1 of [18], Theorem 1.8 immediately
follows.
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