• Title/Summary/Keyword: Weighted composition operators

Search Result 43, Processing Time 0.022 seconds

BOUNDED, COMPACT AND SCHATTEN CLASS WEIGHTED COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES

  • Wolf, Elke
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.455-462
    • /
    • 2011
  • An analytic self-map ${\phi}$ of the open unit disk $\mathbb{D}$ in the complex plane and an analytic map ${\psi}$ on $\mathbb{D}$ induce the so-called weighted composition operator $C_{{\phi},{\psi}}$: $H(\mathbb{D})\;{\rightarrow}\;H(\mathbb{D})$, $f{\mapsto} \;{\psi}\;(f\;o\;{\phi})$, where H($\mathbb{D}$) denotes the set of all analytic functions on $\mathbb{D}$. We study when such an operator acting between different weighted Bergman spaces is bounded, compact and Schatten class.

GENERALIZED WEIGHTED COMPOSITION OPERATORS FROM AREA NEVANLINNA SPACES TO WEIGHTED-TYPE SPACES

  • Weifeng, Yang;Weiren, Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1195-1205
    • /
    • 2011
  • Let $H(\mathbb{D})$ denote the class of all analytic functions on the open unit disk $\mathbb{D}$ of the complex plane $\mathbb{C}$. Let n be a nonnegative integer, ${\varphi}$ be an analytic self-map of $\mathbb{D}$ and $u{\in}H(\mathbb{D})$. The generalized weighted composition operator is defined by $$D_{{\varphi},u}^nf=uf^{(n)}{\circ}{\varphi},\;f{\in}H(\mathbb{D})$$. The boundedness and compactness of the generalized weighted composition operator from area Nevanlinna spaces to weighted-type spaces and little weighted-type spaces are characterized in this paper.

WEIGHTED COMPOSITION OPERATORS ON BERS-TYPE SPACES OF LOO-KENG HUA DOMAINS

  • Jiang, Zhi-jie;Li, Zuo-an
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.583-595
    • /
    • 2020
  • Let HEI, HEII, HEIII and HEIV be the first, second, third and fourth type Loo-Keng Hua domain respectively, 𝜑 a holomorphic self-map of HEI, HEII, HEIII, or HEIV and u ∈ H(𝓜) the space of all holomorphic functions on 𝓜 ∈ {HEI, HEII, HEIII, HEIV}. In this paper, motivated by the well known Hua's matrix inequality, first some inequalities for the points in the Bers-type spaces of the Loo-Keng Hua domains are obtained, and then the boundedness and compactness of the weighted composition operators W𝜑,u : f ↦ u · f ◦ 𝜑 on Bers-type spaces of these domains are characterized.

WEIGHTED COMPOSITION OPERATORS FROM F(p, q, s) INTO LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.977-991
    • /
    • 2008
  • We characterize the boundedness and compactness of the weighted composition operator $uC_{\psi}$ from the general function space F(p, q, s) into the logarithmic Bloch space ${\beta}_L$ on the unit disk. Some necessary and sufficient conditions are given for which $uC_{\psi}$ is a bounded or a compact operator from F(p,q,s), $F_0$(p,q,s) into ${\beta}_L$, ${\beta}_L^0$ respectively.

GENERALIZED COMPOSITION OPERATORS FROM GENERALIZED WEIGHTED BERGMAN SPACES TO BLOCH TYPE SPACES

  • Zhu, Xiangling
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1219-1232
    • /
    • 2009
  • Let H(B) denote the space of all holomorphic functions on the unit ball B of $\mathbb{C}^n$. Let $\varphi$ = (${\varphi}_1,{\ldots}{\varphi}_n$) be a holomorphic self-map of B and $g{\in}2$(B) with g(0) = 0. In this paper we study the boundedness and compactness of the generalized composition operator $C_{\varphi}^gf(z)=\int_{0}^{1}{\mathfrak{R}}f(\varphi(tz))g(tz){\frac{dt}{t}}$ from generalized weighted Bergman spaces into Bloch type spaces.

COMPLEX SYMMETRIC WEIGHTED COMPOSITION-DIFFERENTIATION OPERATORS ON H2

  • Lian Hu;Songxiao Li;Rong Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1141-1154
    • /
    • 2023
  • In this paper, we study the complex symmetric weighted composition-differentiation operator D𝜓,𝜙 with respect to the conjugation JW𝜉,𝜏 on the Hardy space H2. As an application, we characterize the necessary and sufficient conditions for such an operator to be normal under some mild conditions. Finally, the spectrum of D𝜓,𝜙 is also investigated.

PRODUCT-TYPE OPERATORS FROM WEIGHTED BERGMAN-ORLICZ SPACES TO WEIGHTED ZYGMUND SPACES

  • JIANG, ZHI-JIE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1383-1399
    • /
    • 2015
  • Let ${\mathbb{D}}=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$ be the open unit disk in the complex plane $\mathbb{C}$, ${\varphi}$ an analytic self-map of $\mathbb{D}$ and ${\psi}$ an analytic function in $\mathbb{D}$. Let D be the differentiation operator and $W_{{\varphi},{\psi}}$ the weighted composition operator. The boundedness and compactness of the product-type operator $W_{{\varphi},{\psi}}D$ from the weighted Bergman-Orlicz space to the weighted Zygmund space on $\mathbb{D}$ are characterized.