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PRODUCT-TYPE OPERATORS FROM

WEIGHTED BERGMAN-ORLICZ SPACES

TO WEIGHTED ZYGMUND SPACES

Zhi-Jie Jiang

Abstract. Let D = {z ∈ C : |z| < 1} be the open unit disk in the com-
plex plane C, ϕ an analytic self-map of D and ψ an analytic function in D.
Let D be the differentiation operator andWϕ,ψ the weighted composition
operator. The boundedness and compactness of the product-type oper-
ator Wϕ,ψD from the weighted Bergman-Orlicz space to the weighted
Zygmund space on D are characterized.

1. Introduction

Let C be the complex plane, D = {z ∈ C : |z| < 1} the open unit disk in
C, and H(D) the class of all analytic functions on D. Let ϕ be an analytic
self-map of D and ψ ∈ H(D). The weighted composition operator Wϕ,ψ on
H(D) is defined by

Wϕ,ψf(z) = ψ(z)f(ϕ(z)), z ∈ D.

If ψ ≡ 1, the operator is reduced to, so called, the composition operator and is
usually denoted by Cϕ. If ϕ(z) = z, it is reduced to, so called, the multiplica-
tion operator and usually denoted by Mψ. A standard problem is to provide
function theoretic characterizations when ϕ and ψ induce a bounded or com-
pact weighted composition operator. Weighted composition operators between
various spaces of analytic functions on different domains have been studied by
numerous authors, see, e.g., [1, 2, 6, 8, 9, 10, 13, 17, 18, 22, 23, 26, 31, 34, 36, 40]
and the references therein.

Let D be the differentiation operator on H(D), that is

Df(z) = f ′(z), z ∈ D.

Operator CϕD has been studied, for example, in [4, 11, 14, 16, 19, 28, 30, 32].
In [21] Sharma has studied the following operators from Bergman spaces to
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Bloch type spaces:
MψCϕDf(z) = ψ(z)f ′(ϕ(z)),

MψDCϕf(z) = ψ(z)ϕ′(z)f ′(ϕ(z)),

CϕMψDf(z) = ψ(ϕ(z))f ′(ϕ(z)),

and
CϕDMψf(z) = ψ′(ϕ(z))f(ϕ(z)) + ψ(ϕ(z))f ′(ϕ(z))

for f ∈ H(D) and z ∈ D. These operators on weighted Bergman spaces were
also studied in [37] and [38] by Stević, Sharma and Bhat. If we consider the
product-type operator Wϕ,ψD, it is clear that

MψCϕD =Wϕ,ψD, MψDCϕ =Wϕ,ψ·ϕ′D,

CϕMψD =Wϕ,ψ◦ϕD and CϕDMψ =Wϕ,ψ′◦ϕ +Wϕ,ψ◦ϕD.

Quite recently, the present author has considered operatorWϕ,ψD from weight-
ed Bergman spaces to weighted Zygmund spaces in [5]. For some other product-
type operators, see, for example [7, 12, 15, 24, 25, 27, 29, 33, 39, 41] and the
references therein. This paper is devoted to characterizing the boundedness
and compactness of the operatorWϕ,ψD from weighted Bergman-Orlicz spaces
to weighted Zygmund spaces. It can be regarded as a continuation of the
investigation of operators from weighted Bergman-Orlicz spaces to other spaces
(see, e.g., [20]).

We introduce the needed spaces and facts in [20]. The function Φ 6≡ 0 is
called a growth function, if it is a continuous and nondecreasing function from
the interval [0,∞) onto itself. Clearly, these conditions imply that Φ(0) = 0.
It is said that the function Φ is of positive upper type (respectively, negative
upper type), if there are q > 0 (respectively, q < 0) and C > 0 such that
Φ(st) ≤ CtqΦ(s) for every s > 0 and t ≥ 1. By Uq we denote the family of
all growth functions Φ of positive upper type q (q ≥ 1), such that the function
t 7→ Φ(t)/t is nondecreasing on [0,∞). It is said that function Φ is of positive
lower type (respectively, negative upper type), if there are r > 0 (respectively,
r < 0) and C > 0 such that Φ(st) ≤ CtrΦ(s) for every s > 0 and 0 < t ≤ 1.
By Lr we denote the family of all growth functions Φ of positive lower type r
(0 < r ≤ 1), such that the function t 7→ Φ(t)/t is nonincreasing on [0,∞). If
f ∈ U

q, we will also assume that it is convex.
Let dA(z) = 1

πdxdy be the normalized Lebesgue measure on D. Let α > −1

and dAα(z) = (α + 1)(1 − |z|2)αdA(z) the weighted Lebesgue measure on D.
Let Φ be a growth function. The weighted Bergman-Orlicz space AΦ

α(D) := AΦ
α

consists of all f ∈ H(D) such that

‖f‖AΦ
α
=

∫

D

Φ(|f(z)|)dAα(z) <∞.

On AΦ
α is defined the following quasi-norm

‖f‖luxAΦ
α
= inf

{

λ > 0 :

∫

D

Φ
( |f(z)|

λ

)

dAα(z) ≤ 1
}

.
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If Φ ∈ Uq or Φ ∈ Lr, then the quasi-norm on AΦ
α is finite and called the Lux-

embourg norm. The classical weighted Bergman space Apα, p > 0, corresponds
to Φ(t) = tp, consisting of all f ∈ H(D) such that

‖f‖p
Ap

α
=

∫

D

|f(z)|pdAα(z) <∞.

It is well known that for p ≥ 1 it is a Banach space, while for 0 < p < 1 it
is a translation-invariant metric space with d(f, g) = ‖f − g‖p

Ap
α
. Moreover, if

Φ ∈ Us, then A
Φp
α , where Φp(t) = Φ(tp), is a subspace of Apα. This fact will be

used later.
For β > 0, the weighted Zygmund space Zβ consists of all f ∈ H(D) such

that
sup
z∈D

(1− |z|2)β |f ′′(z)| <∞.

It is a Banach space with the norm

‖f‖Zβ
= |f(0)|+ |f ′(0)|+ sup

z∈D

(1− |z|2)β |f ′′(z)|.

The little weighted Zygmund space Zβ,0 consists of those functions f in Zβ
such that

lim
|z|→1−

(1− |z|2)β |f ′′(z)| = 0,

and it is a closed subspace of the weighted Zygmund space. For a good source
of such spaces, we refer to [42]. For weighted Zygmund spaces on the unit
disk, the upper half plane, the unit ball and some operators on them, see, e.g.
[6, 13, 15, 35] and the references therein.

Let X and Y be topological vector spaces whose topologies are given by
translation invariant metrics dX and dY , respectively. It is said that a linear
operator L : X → Y is metrically bounded if there exists a positive constant
K such that

dY (Lf, 0) ≤ KdX(f, 0)

for all f ∈ X . When X and Y are Banach spaces, the metrical boundedness co-
incides with the usual definition of bounded operators between Banach spaces.
Operator L : X → Y is said to be metrically compact if it maps bounded sets
into relatively compact sets. When X and Y are Banach spaces, the metrical
compactness coincides with the usual definition of compact operators between
Banach spaces. When X = AΦ

α and Y is a Banach space, the norm of operator
L is

‖L‖AΦ
α→Y = sup

‖f‖
AΦ

α
≤1

‖Lf‖Y

and is usually written by ‖L‖.
Throughout this paper, an operator is bounded (respectively, compact), if it

is metrically bounded (respectively, metrically compact). C will be a constant
not necessarily the same at each occurrence. The notation a . b means that
a ≤ Cb for some positive constant C. When a . b and b . a, we write a ≃ b.
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2. Auxiliary results

Our first lemma characterizes the compactness in terms of sequential con-
vergence. Since the proof is standard, it is omitted (see, Proposition 3.11 in
[3]).

Lemma 2.1. Let p ≥ 1, α > −1, β > 0 and Φ ∈ Us such that Φp ∈ Lr.

Then the bounded operator Wϕ,ψD : A
Φp
α → Zβ is compact if and only if for

every bounded sequence {fn}n∈N in A
Φp
α such that fn → 0 uniformly on every

compact subset of D as n→ ∞, it follows that

lim
n→∞

‖Wϕ,ψDfn‖Zβ
= 0.

In order to prove our main results, we need a useful point evaluation estimate
contained in the following lemma.

Lemma 2.2. Let p ≥ 1, α > −1 and Φ ∈ Us. Then there are positive constants

Cn = Cn(α, p) and Dn = Dn(α, p) independent of f ∈ A
Φp
α and z ∈ D such

that

|f (n)(z)| ≤ Cn
(1 − |z|2)nΦ

−1
p

((

Dn

1− |z|2
)α+2 )

‖f‖lux
A

Φp
α

.

Proof. Since A
Φp
α is a subspace of Apα, by the integral representation for func-

tions in Apα, we have that for every f ∈ A
Φp
α and z ∈ D (see Theorem 2.2 in

[42])

f(z) =

∫

D

f(w)

(1 − wz)α+2
dAα(w).(1)

Differentiating (1) under the integral sign n times yields

f (n)(z) = cn,α

∫

D

wnf(w)

(1− wz)α+n+2
dAα(w).

Then
∣

∣f (n)(z)
∣

∣ ≤ cn,α

∫

D

|f(w)|
|1− wz|n+α+2

dAα(w).(2)

By the fact (see, e.g., Theorem 1.12 in [42]) that

1

(1− |z|2)n ≃
∫

D

(1 − |w|2)α
|1− wz|α+n+2

dA(w),(3)

there is a positive constant c1 such that

c1
(1− |z|2)n

|1− wz|α+n+2
dAα(w)

is a probability measure. From (3) and applying Jensen’s inequality in (2), we
obtain

(1− |z|2)np|f (n)(z)|p ≤ c2(1− |z|2)n
∫

D

|f(w)|p
|1− wz|α+n+2

dAα(w).
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From this, we have

c1c
−1
2 (1− |z|2)np|f (n)(z)|p ≤ c1

∫

D

|f(w)|p (1 − |z|2)n
|1− wz|α+n+2

dAα(w).(4)

Therefore, from (4), the monotonicity and convexity of function Φ, we get

Φ
(c1c

−1
2 (1− |z|2)np|f (n)(z)|p

(‖f‖lux
AΦ

α
)p

)

≤ c1

∫

D

Φp

( |f(w)|
‖f‖lux

AΦ
α

) (1− |z|2)n
|1− wz|α+n+2

dAα(w)

≤ 2nc1

( 2

1− |z|2
)α+2

∫

D

Φp

( |f(w)|
‖f‖luxAΦ

α

)

dAα(w)

≤ Dn

(1 − |z|2)α+2
.(5)

From (5), we obtain

|f (n)(z)| ≤ Cn
(1 − |z|2)nΦ

−1
p

((

Dn

1− |z|2
)α+2 )

‖f‖lux
A

Φp
α

,

where Cn = c
− 1

p

1 c
1
p

2 and Dn = α+2
√
2n+α+2c1. The proof is finished. �

The following lemma provides a class of useful test functions in space A
Φp
α .

Lemma 2.3. Let p > 0, α > −1 and Φ ∈ Us. Then for every t ≥ 0 and w ∈ D,

the following function is in A
Φp
α

fw,t(z) = Φ−1
p

(( C

1− |w|2
)α+2)(1− |w|2

1− wz

)

2(α+2)
p

+t

,

where C is an arbitrary positive constant.

Moreover,

sup
w∈D

‖fw,t‖lux
A

Φp
α

. 1.

Proof. Let

g(z) =
(1− |w|2
1− wz

)

2(α+2)
p

+t

.

Since Φ−1
p (t) = (Φ−1(t))1/p, we have

∫

D

Φ(|fw,t(z)|p)dAα(z) =
∫

D

Φ
(

Φ−1
(( C

1− |w|2
)α+2)

∣

∣g(z)
∣

∣

p
)

dAα(z) = I + J,

where

I =

∫

{z∈D:|g(z)|≤1}

Φ
(

Φ−1
(( C

1− |w|2
)α+2)

∣

∣g(z)
∣

∣

p
)

dAα(z)

and

J =

∫

{z∈D:|g(z)|>1}

Φ
(

Φ−1
(( C

1− |w|2
)α+2)

∣

∣g(z)
∣

∣

p
)

dAα(z).
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Since Φ(t)/t is nondecreasing on [0,∞), it follows that

Φ(t|g(z)|)
t|g(z)| ≤ Φ(t)

t

for all z ∈ {z ∈ D : |g(z)| ≤ 1}. This gives

I =

∫

{z∈D:|g(z)|≤1}

Φ
(

Φ−1
(( C

1− |w|2
)α+2)

∣

∣g(z)
∣

∣

p
)

dAα(z)

≤
∫

{z∈D:|g(z)|≤1}

Φ
(

Φ−1
(( C

1− |w|2
)α+2))

∣

∣g(z)
∣

∣

p
dAα(z)

≤ Cα+2

∫

D

(1− |w|2)α+pt+2

|1− wz|2(α+2)+pt
dAα(z)

. 1,

where we have used Theorem 1.12 in [42]. From the definition of positive upper
type and the fact s ≥ 1, we obtain

J =

∫

{z∈D:|g(z)|>1}

Φ
(

Φ−1
(( C

1− |w|2
)α+2)

∣

∣g(z)
∣

∣

p
)

dAα(z)

.

∫

{z∈D:|g(z)|>1}

Φ
(

Φ−1
(( C

1− |w|2
)α+2))

∣

∣g(z)
∣

∣

ps
dAα(z)

≤
( C

1− |w|2
)α+2

∫

D

(1− |w|2)2s(α+2+ pt
2 )

|1− wz|2s(α+2+ pt
2 )

dAα(z)

. 1.

From this the lemma follows. �

In the last result of this section, we construct some suitable linear combina-
tions of the test functions in Lemma 2.3 which will be used the proofs of the
main results.

Lemma 2.4. Let p > 0, α > −1, w ∈ D and Φ ∈ Us. Then for a fixed

j ∈ {1, 2, 3}, there exist constants c1, c2 and c3 such that the function

gw,j(z) =

2
∑

i=0

ci+1fϕ(w),i(z)

satisfies

g
(j)
w,j(ϕ(w)) = cΦ−1

p

(( C

1− |ϕ(w)|2
)α+2) ϕ(w)

j

(1 − |ϕ(w)|2)j and g
(k)
w,j(ϕ(w)) = 0

for each k ∈ {1, 2, 3} \ {j}, where c is a nonzero constant.

Moreover,

sup
w∈D

‖gw,j‖lux
A

Φp
α

. 1.
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Proof. We write a = 2(α+ 2)/p. Set

g(z) =

2
∑

i=0

xi+1fϕ(w),i(z), z ∈ D.

First, considering the case of j = 1, from g′′(ϕ(w)) = g′′′(ϕ(w)) = 0 we obtain
the following linear system:















2
∑

i=0

(a+ i)(a+ 1 + i)xi+1 = 0

2
∑

i=0

(a+ i)(a+ 1 + i)(a+ 2 + i)xi+1 = 0.

If we regard x3 as a free variable, by solving this linear system we obtain

x1 =
(a+ 2)(a+ 3)

a(a+ 1)
x3

and

x2 = −2(a+ 3)

(a+ 1)
x3.

Therefore, by a direct calculation and the expression of g′(ϕ(w)) we find that

c =
2

a+ 1
x3.

Clearly x3 6= 0 if and only if c 6= 0. Hence, let x3 be a nonzero number. For
this x3, we take c3 = x3. Then replacing x3 with c3 in the above relations
between x1, x2 and x3, we obtain c1 and c2. For such obtained c1, c2 and c3,
we get the needed function

gw,1(z) =
2

∑

i=0

ci+1fϕ(w),i(z).

Since we can similarly prove the lemma for the cases of j = 2 and j = 3, the
proof is omitted here. By Lemma 2.3, the asymptotic estimate

sup
w∈D

‖gw,j‖lux
A

Φp
α

. 1

is also obvious. The proof is finished. �

3. The operator Wϕ,ψD : AΦp

α → Zβ

First we consider the boundedness of operator Wϕ,ψD : A
Φp
α → Zβ . In the

boundedness criteria, we assume that Φ ∈ Us such that Φp ∈ Lr. Under this

assumption, A
Φp
α is a complete metric space (see, for example, [20]).

Theorem 3.1. Let p ≥ 1, α > −1, β > 0 and Φ ∈ Us such that Φp ∈ Lr.

Then the following conditions are equivalent:

(i) The operator Wϕ,ψD : A
Φp
α → Zβ is bounded.
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(ii) Functions ϕ and ψ satisfy the following conditions:

M1 = sup
z∈D

(1− |z|2)β
1− |ϕ(z)|2

∣

∣ψ′′(z)
∣

∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

<∞,

M2 = sup
z∈D

(1− |z|2)β
(1 − |ϕ(z)|2)2

∣

∣

∣
ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣

∣

∣
Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

<∞,

and

M3 = sup
z∈D

(1 − |z|2)β
(1− |ϕ(z)|2)3

∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2
Φ−1
p

(( D3

1− |ϕ(z)|2
)α+2)

<∞.

Moreover, if the operator Wϕ,ψD : A
Φp
α → Zβ is bounded, then

∥

∥Wϕ,ψD
∥

∥ ≃ 1 +M1 + 2M2 +M3.

Proof. (i)⇒(ii). Suppose that (i) holds. We consider the function f(z) = z.

Since the operator Wϕ,ψD : A
Φp
α → Zβ is bounded, we have

J1 = sup
z∈D

(1 − |z|2)β
∣

∣ψ′′(z)
∣

∣ ≤ ‖Wϕ,ψDz‖Zβ
≤ C‖Wϕ,ψD‖.(6)

For w ∈ D and D1 (the constant in Lemma 2.2), by Lemma 2.4 there exist
constants c1, c2 and c3 such that the function

gw,1(z) =

2
∑

i=0

ci+1fϕ(w),i(z)

satisfies supw∈D
‖gw,1‖lux

A
Φp
α

≤ C, g′′w,1(ϕ(w)) = g′′′w,1(ϕ(w)) = 0 and

g′w,1(ϕ(w)) = cΦ−1
p

(( D1

1− |ϕ(w)|2
)α+2) ϕ(w)

1− |ϕ(w)|2 .(7)

From these facts and the boundedness of Wϕ,ψD : A
Φp
α → Zβ , we have

(1 − |w|2)β |ϕ(w)|
1− |ϕ(w)|2 |ψ′′(w)|Φ−1

p

(( D1

1− |ϕ(w)|2
)α+2)

≤ ‖Wϕ,ψDgw,1‖Zβ

≤ C‖Wϕ,ψD‖.
This leads to

J2 = sup
z∈D

(1− |z|2)β |ϕ(z)|
1− |ϕ(z)|2 |ψ′′(z)|Φ−1

p

(( D1

1− |ϕ(z)|2
)α+2)

≤ C‖Wϕ,ψD‖.(8)

Then for the fixed δ ∈ (0, 1), from (6) it follows that

sup
{z:|ϕ(z)|≤δ}

(1 − |z|2)β
1− |ϕ(z)|2

∣

∣ψ′′(z)
∣

∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

≤ J1
1− δ2

Φ−1
p

(( D1

1− δ2

)α+2)

≤ C‖Wϕ,ψD‖,(9)
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and from (8) it follows that

sup
{z:|ϕ(z)|>δ}

(1 − |z|2)β
1− |ϕ(z)|2

∣

∣ψ′′(z)
∣

∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

≤ J2
δ

≤ C‖Wϕ,ψD‖.(10)

Hence, combing (9) and (10), we obtain

M1 = sup
z∈D

(1− |z|2)β
1− |ϕ(z)|2

∣

∣ψ′′(z)
∣

∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

≤ C‖Wϕ,ψD‖ <∞.

(11)

Next we prove M2 <∞. First taking the function f(z) = z2, we have

sup
z∈D

(1− |z|2)β
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z) + ψ′′(z)ϕ(z)
∣

∣ ≤ C‖Wϕ,ψD‖.(12)

Since

J1 = sup
z∈D

(1− |z|2)β |ψ′′(z)| ≤ C‖Wϕ,ψD‖

and the fact ‖ϕ‖∞ ≤ 1 imply

sup
z∈D

(1 − |z|2)β |ψ′′(z)||ϕ(z)| ≤ C‖Wϕ,ψD‖,

by (12) we have

K1 = sup
z∈D

(1− |z|2)β
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣ ≤ C‖Wϕ,ψD‖.(13)

For w ∈ D and D2, by Lemma 2.4 there exist c1, c2 and c3 such that the
function

gw,2(z) =

2
∑

i=0

ci+1fϕ(w),i(z)

satisfies supw∈D ‖gw,2‖luxAΦp
α

≤ C, g′w,2(ϕ(w)) = g′′′w,2(ϕ(w)) = 0 and

g′′w,2(ϕ(w)) = cΦ−1
p

(( D2

1− |ϕ(w)|2
)α+2) ϕ(w)

2

(1− |ϕ(w)|2)2 .(14)

From these and the boundedness of Wϕ,ψD : A
Φp
α → Zβ , we get

(1 − |w|2)β |ϕ(w)|2
(1− |ϕ(w)|2)2

∣

∣ψ(w)ϕ′′(w) + 2ψ′(w)ϕ′(w)
∣

∣Φ−1
p

(( D2

1− |ϕ(w)|2
)α+2)

(15)

≤ ‖Wϕ,ψDgw,2‖Zβ
≤ C‖Wϕ,ψD‖.

Then (15) shows

K2 = sup
z∈D

(1− |z|2)β |ϕ(z)|2
(1 − |ϕ(z)|2)2

∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

(16)
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≤ C‖Wϕ,ψD‖.

Hence, for the fixed δ ∈ (0, 1), by (13)

sup
{z:|ϕ(z)|≤δ}

(1 − |z|2)β
(1− |ϕ(z)|2)2

∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

(17)

≤ K1

(1− δ2)2
Φ−1
p

(( D2

1− δ2

)α+2)

≤ C‖Wϕ,ψD‖,

and by (16)

sup
{z:|ϕ(z)|>δ}

(1 − |z|2)β
(1− |ϕ(z)|2)2

∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

(18)

≤ K2

δ2
≤ C‖Wϕ,ψD‖.

So, from (17) and (18), we obtain

M2 = sup
z∈D

(1− |z|2)β
(1 − |ϕ(z)|2)2

∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

(19)

≤ C‖Wϕ,ψD‖ <∞.

Finally, we prove M3 <∞. Taking the function f(z) = z3, we have

sup
z∈D

(1 − |z|2)β
∣

∣

∣
ψ′′(z)ϕ(z)2 + 2ψ(z)ϕ′′(z)ϕ(z)2(20)

+ 4ψ′(z)ϕ′(z)ϕ(z) + 2ψ(z)ϕ′(z)2
∣

∣

∣

≤ ‖Wϕ,ψDz
3‖Zβ

≤ C‖Wϕ,ψD‖.

By (6), (13), (20) and the fact that ‖ϕ‖∞ ≤ 1,

L1 = sup
z∈D

(1− |z|2)β |ψ(z)||ϕ′(z)|2 ≤ C‖Wϕ,ψD‖.(21)

For w ∈ D and D3, Lemma 2.4 shows that there exist constants c1, c2 and
c3 such that the function

gw,3(z) =

2
∑

i=0

ci+1fϕ(w),i(z)

satisfies supw∈D
‖gw,3‖lux

A
Φp
α

≤ C, g′w,3(ϕ(w)) = g′′w,3(ϕ(w)) = 0 and

g′′′w,3(ϕ(w)) = cΦ−1
p

(( D3

1− |ϕ(w)|2
)α+2) ϕ(w)

3

(1− |ϕ(w)|2)3 .(22)
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Then

(1 − |w|2)β |ϕ(w)|3
(1− |ϕ(w)|2)3 |ψ(w)||ϕ′(w)|2Φ−1

p

(( D3

1− |ϕ(w)|2
)α+2)

≤ ‖Wϕ,ψDgw,3‖Zβ
≤ C‖Wϕ,ψD‖.

From this, we get

L2 = sup
z∈D

(1− |z|2)β |ϕ(z)|3
(1− |ϕ(z)|2)3 |ψ(z)||ϕ′(z)|2Φ−1

p

(( D3

1− |ϕ(z)|2
)α+2)

≤ C‖Wϕ,ψD‖.(23)

For the fixed δ ∈ (0, 1), by (21)

sup
{z:|ϕ(z)|≤δ}

(1− |z|2)β
(1− |ϕ(z)|2)3

∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2
Φ−1
p

(( D3

1− |ϕ(z)|2
)α+2)

≤ L1

(1 − δ2)3
Φ−1
p

(( D3

1− δ2

)α+2)

≤ C‖Wϕ,ψD‖,(24)

and by (23)

sup
{z:|ϕ(z)|>δ}

(1− |z|2)β
(1− |ϕ(z)|2)3

∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2
Φ−1
p

(( D3

1− |ϕ(z)|2
)α+2)

(25)

≤ L2

δ3
≤ C‖Wϕ,ψD‖.

Therefore, by (24) and (25)

M3 = sup
z∈D

(1 − |z|2)β
(1− |ϕ(z)|2)3

∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2
Φ−1
p

(( D3

1− |ϕ(z)|2
)α+2)

(26)

≤ C‖Wϕ,ψD‖ <∞.

(ii)⇒(i). By Lemma 2.2, for all f ∈ A
Φp
α we have

‖Wϕ,ψDf‖Zβ
(27)

=
∣

∣ψ(0)f ′(ϕ(0))
∣

∣+
∣

∣(ψ · f ′ ◦ ϕ)′(0)
∣

∣+ sup
z∈D

(1− |z|2)β
∣

∣(ψ · f ′ ◦ ϕ)′′(z)
∣

∣

≤
∣

∣ψ(0)f ′(ϕ(0))
∣

∣+
∣

∣(ψ · f ′ ◦ ϕ)′(0)
∣

∣+ sup
z∈D

(1− |z|2)β
∣

∣ψ′′(z)
∣

∣

∣

∣f ′(ϕ(z))
∣

∣

+ 2 sup
z∈D

(1− |z|2)β
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣

∣

∣f ′′(ϕ(z))
∣

∣

+ sup
z∈D

(1 − |z|2)β
∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2∣
∣f ′′′(ϕ(z))

∣

∣

≤ C
(

1 +M1 + 2M2 +M3

)

‖f‖lux
A

Φp
α

.

From condition (ii) and (27), it follows that Wϕ,ψD : A
Φp
α → Zβ is bounded.

From (11), (19), (26), (27) and Lemma 2.2, we also obtain the asymptotic
expression of ‖Wϕ,ψD‖. The proof is finished. �
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We begin to characterize the compactness of operator Wϕ,ψD : A
Φp
α → Zβ .

Theorem 3.2. Let p ≥ 1, α > −1, β > 0 and Φ ∈ Us such that Φp ∈ Lr.

Then the following conditions are equivalent:

(i) The operator Wϕ,ψD : A
Φp
α → Zβ is compact.

(ii) Functions ϕ and ψ are such that ψ ∈ Zβ,

J1 = sup
z∈D

(1− |z|2)β
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣ <∞,

J2 = sup
z∈D

(1− |z|2)β
∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2
<∞,

lim
|ϕ(z)|→1

(1− |z|2)β
1− |ϕ(z)|2

∣

∣ψ′′(z)
∣

∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

= 0,

lim
|ϕ(z)|→1

(1− |z|2)β
(1− |ϕ(z)|2)2

∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

= 0,

and

lim
|ϕ(z)|→1

(1 − |z|2)β
(1− |ϕ(z)|2)3

∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2
Φ−1
p

(( D3

1− |ϕ(z)|2
)α+2)

= 0.

Proof. (i)⇒(ii). Suppose that (i) holds. Then the operatorWϕ,ψD : A
Φp
α → Zβ

is bounded. In the proof of Theorem 3.1, we have proven that ψ ∈ Zβ , J1 <∞
and J2 <∞.

Next consider a sequence {ϕ(zn)}n∈N in D such that |ϕ(zn)| → 1 as n→ ∞.
If such sequence does not exist, then condition (ii) obviously holds. By Lemma
2.4, we can choose constants c1, c2 and c3 such that the functions

gn,1(z) := gϕ(zn),1(z) =
2

∑

i=0

ci+1fϕ(zn),i(z)

satisfy supn∈N
‖gn,1‖lux

A
Φp
α

≤ C, g′′n,1(ϕ(zn)) = g′′′n,1(ϕ(zn)) = 0 and

g′n,1(ϕ(zn)) = cΦ−1
p

(( D1

1− |ϕ(zn)|2
)α+2) ϕ(zn)

1− |ϕ(zn)|2
.(28)

From the proof of Theorem 3.6 in [20], it follows that the sequence {gn,1}n∈N

uniformly converges to zero on any compact subset of D as n→ ∞. Hence, by
Lemma 2.1,

lim
n→∞

‖Wϕ,ψDgn,1‖Zβ
= 0.

From these, we have

lim
n→∞

(1− |zn|2)β
1− |ϕ(zn)|2

∣

∣ψ′′(zn)
∣

∣Φ−1
p

(( D1

1− |ϕ(zn)|2
)α+2)

= 0.
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By Lemma 2.4, there are constants c1, c2 and c3 such that the functions

gn,2(z) := gϕ(zn),2(z) =

2
∑

i=0

ci+1fϕ(zn),i(z)

satisfy supn∈N
‖gn,2‖lux

A
Φp
α

≤ C, g′n,2(ϕ(zn)) = g′′′n,2(ϕ(zn)) = 0 and

g′′n,2(ϕ(zn)) = cΦ−1
p

(( D2

1− |ϕ(zn)|2
)α+2) ϕ(zn)

2

(1− |ϕ(zn)|2)2
.(29)

From the proof of Theorem 3.6 in [20], the sequence {gn,2}n∈N uniformly con-
verges to zero on any compact subset of D as n→ ∞. Then by Lemma 2.1,

lim
n→∞

‖Wϕ,ψDgn,2‖Zβ
= 0.

As a result, we get

lim
n→∞

(1 − |zn|2)β
(1− |ϕ(zn)|2)2

∣

∣ψ(zn)ϕ
′′(zn) + 2ψ′(z)ϕ′(zn)

∣

∣Φ−1
p

(( D2

1− |ϕ(zn)|2
)α+2)

= 0.

Finally, we choose the functions

gn,3(z) := gϕ(zn),3 =

2
∑

i=0

ci+1fϕ(zn),i(z).

Lemma 2.4 shows that all the functions gn,3 satisfy supn∈N ‖gn,3‖lux
A

Φp
α

≤ C,

g′′′n,3(ϕ(zn)) = cΦ−1
p

(( D3

1− |ϕ(zn)|2
)α+2) ϕ(zn)

3

(1 − |ϕ(zn)|2)3
(30)

and

g′n,3(ϕ(zn)) = g′′n,3(ϕ(zn)) = 0.(31)

The sequence {gn,3}n∈N also uniformly converges to zero on any compact subset
of D as n→ ∞. Then from Lemma 2.1, it follows that

lim
n→∞

‖Wϕ,ψDgn,3‖Zβ
= 0.

Consequently, from these facts we obtain

lim
n→∞

(1− |zn|2)β
(1 − |ϕ(zn)|2)3

|ψ(zn)||ϕ′(zn)|2Φ−1
p

(( D3

1− |ϕ(zn)|2
)α+2)

= 0.

The proof of the implication is finished.

(ii)⇒(i). We first check that Wϕ,ψD : A
Φp
α → Zβ is bounded. For this we

observe that condition (ii) implies that for every ε > 0, there is an η ∈ (0, 1)
such that

L1(z) =
(1− |z|2)β
1− |ϕ(z)|2

∣

∣ψ′′(z)
∣

∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

< ε,(32)
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L2(z) =
(1− |z|2)β

(1− |ϕ(z)|2)2
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

< ε,

(33)

and

L3(z) =
(1− |z|2)β

(1 − |ϕ(z)|2)3 |ψ(z)||ϕ
′(z)|2Φ−1

p

(( D3

1− |ϕ(z)|2
)α+2)

< ε(34)

for all z ∈ K = {z ∈ D : |ϕ(z)| > η}.
Since ψ ∈ Zβ , by (32) we have

M1 = sup
z∈D

L1(z) ≤ sup
z∈D\K

L1(z) + sup
z∈K

L1(z)

≤ ‖ψ‖Zβ

1− η2
Φ−1
p

(( D1

1− η2

)α+2)

+ ε.

From (33) and J1 <∞, we obtain

M2 = sup
z∈D

L2(z) ≤ sup
z∈D\K

L2(z) + sup
z∈K

L2(z)

≤ J1
(1− η2)2

Φ−1
p

(( D2

1− η2

)α+2)

+ ε.

From (34) and J2 <∞, we also get

M3 = sup
z∈D

L2(z) ≤ sup
z∈D\K

L3(z) + sup
z∈K

L3(z)

≤ J2
(1− η2)3

Φ−1
p

(( D3

1− η2

)α+2)

+ ε.

So, by Theorem 3.1, the operator Wϕ,ψD : A
Φp
α → Zβ is bounded.

To prove that the operator Wϕ,ψD : A
Φp
α → Zβ is compact, by Lemma

2.1, we just need to prove that, if {fn}n∈N is a sequence in A
Φp
α such that

‖fn‖lux
A

Φp
α

≤ M and fn → 0 uniformly on any compact subset of D as n → ∞,

then
lim
n→∞

‖Wϕ,ψDfn‖Zβ
= 0.

For any ε > 0 and the above η, we have, by using again the condition (ii) and
Lemma 2.2,

sup
z∈D

(1− |z|2)β
∣

∣Wϕ,ψDfn(z)
∣

∣

= sup
z∈D

(1− |z|2)β
∣

∣(ψ · f ′
n ◦ ϕ)′′(z)

∣

∣

≤ sup
z∈D

(1− |z|2)β
∣

∣ψ′′(z)
∣

∣

∣

∣f ′
n(ϕ(z))

∣

∣

+ sup
z∈D

(1 − |z|2)β
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣

∣

∣f ′′
n (ϕ(z))

∣

∣

+ sup
z∈D

(1 − |z|2)β
∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2∣
∣f ′′′
n (ϕ(z))

∣

∣
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≤ sup
z∈D\K

(1 − |z|2)β
∣

∣ψ′′(z)
∣

∣

∣

∣f ′
n(ϕ(z))

∣

∣+ sup
z∈K

(1− |z|2)β
∣

∣ψ′′(z)
∣

∣

∣

∣f ′
n(ϕ(z))

∣

∣

+ 2 sup
z∈D\K

(1 − |z|2)β
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣

∣

∣f ′′
n (ϕ(z))

∣

∣

+ 2 sup
z∈K

(1 − |z|2)β
∣

∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣

∣

∣

∣f ′′
n (ϕ(z))

∣

∣

+ sup
z∈D\K

(1− |z|2)β
∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2∣
∣f ′′′
n (ϕ(z))

∣

∣

+ sup
z∈K

(1− |z|2)β
∣

∣ψ(z)
∣

∣

∣

∣ϕ′(z)
∣

∣

2∣
∣f ′′′
n (ϕ(z))

∣

∣

≤ ‖ψ‖Zβ
sup

{z:|z|≤η}

∣

∣f ′
n(z)

∣

∣+M sup
z∈K

L1(z) + J1 sup
{z:|z|≤η}

∣

∣f ′′
n (z)

∣

∣+M sup
z∈K

L2(z)

+ J2 sup
{z:|z|≤η}

∣

∣f ′′′
n (z)

∣

∣+M sup
z∈K

L3(z)

≤ ‖ψ‖Zβ
sup

{z:|z|≤η}

∣

∣f ′
n(z)

∣

∣+ J1 sup
{z:|z|≤η}

∣

∣f ′′
n (z)

∣

∣+ J2 sup
{z:|z|≤η}

∣

∣f ′′′
n (z)

∣

∣+ 3Mε.

Hence,

‖Wϕ,ψDfn‖Zβ
(35)

≤ ‖ψ‖Zβ
sup

{z:|z|≤η}

∣

∣f ′
n(z)

∣

∣+ J1 sup
{z:|z|≤η}

∣

∣f ′′
n (z)

∣

∣+ J2 sup
{z:|z|≤η}

∣

∣f ′′′
n (z)

∣

∣

+ 3Mε+
∣

∣(ψ · f ′
n ◦ ϕ)(0)

∣

∣+
∣

∣(ψ · f ′
n ◦ ϕ)′(0)

∣

∣

= ‖ψ‖Zβ
sup

{z:|z|≤η}

∣

∣f ′
n(z)

∣

∣+ J1 sup
{z:|z|≤η}

∣

∣f ′′
n (z)

∣

∣+ J2 sup
{z:|z|≤η}

∣

∣f ′′′
n (z)

∣

∣

+ 3Mε+
∣

∣ψ(0)f ′
n(ϕ(0))

∣

∣ +
∣

∣ψ′(0)f ′
n(ϕ(0)) + ψ(0)ϕ′(0)f ′′

n (ϕ(0))
∣

∣.

It is easy to see that, if {fn}n∈N uniformly converges to zero on any compact
subset of D, then {f ′

n}n∈N, {f ′′
n}n∈N and {f ′′′

n }n∈N also do as n → ∞. Since
{z : |z| ≤ η} and {ϕ(0)} are compact subsets of D, letting n→ ∞ in (35) gives

lim
n→∞

‖Wϕ,ψDfn‖Zβ
= 0.

From Lemma 2.1, it follows that the operator Wϕ,ψD : A
Φp
α → Zβ is compact.

The proof is finished. �
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