• Title/Summary/Keyword: Weighted composition operators

Search Result 43, Processing Time 0.02 seconds

HYPERCYCLICITY OF WEIGHTED COMPOSITION OPERATORS ON THE UNIT BALL OF ℂN

  • Chen, Ren-Yu;Zhou, Ze-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.969-984
    • /
    • 2011
  • This paper discusses the hypercyclicity of weighted composition operators acting on the space of holomorphic functions on the open unit ball $B_N$ of $\mathbb{C}^N$. Several analytic properties of linear fractional self-maps of $B_N$ are given. According to these properties, a few necessary conditions for a weighted composition operator to be hypercyclic in the space of holomorphic functions are proved. Besides, the hypercyclicity of adjoint of weighted composition operators are studied in this paper.

A Class of Normaloid Weighted Composition Operators on the Fock Space over ℂ

  • Santhoshkumar, Chandrasekaran;Veluchamy, Thirumalaisamy
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.889-896
    • /
    • 2021
  • Let 𝜙 be an entire self map on ℂ and let 𝜓 be an entire function on ℂ. A weighted composition operator induced by 𝜙 with weight 𝜓 is given by C𝜓,𝜙. In this paper we investigate under what conditions the weighted composition operators C𝜓,𝜙 on the Fock space over ℂ induced by 𝜙 with weight of the form $k_c({\zeta})=e^{{\langle}{\zeta},c{\rangle}-{\frac{{\mid}c{\mid}^2}{2}}}$ is normaloid and essentially normaloid.

A NOTE ON WEIGHTED COMPOSITION OPERATORS ON MEASURABLE FUNCTION SPACES

  • Jbbarzadeh, M.R.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.95-105
    • /
    • 2004
  • In this paper we will consider the weighted composition operators W = $uC_{\tau}$ between $L^{p}$$(X,\sum,\mu$) spaces and Orlicz spaces $L^{\phi}$$(X,\sum,\mu$) generated by measurable and non-singular transformations $\tau$ from X into itself and measurable functions u on X. We characterize the functions u and transformations $\tau$ that induce weighted composition operators between $L^{p}$ -spaces by using some properties of conditional expectation operator, pair (u,${\gamma}$) and the measure space $(X,\sum,\mu$). Also, some other properties of these types of operators will be investigated.

WEIGHTED COMPOSITION OPERATORS FROM BERGMAN SPACES INTO WEIGHTED BLOCH SPACES

  • LI SONGXIAO
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • In this paper we study bounded and compact weighted composition operator, induced by a fixed analytic function and an analytic self-map of the open unit disk, from Bergman space into weighted Bloch space. As a corollary, obtain the characterization of composition operator from Bergman space into weighted Bloch space.

ESSENTIAL NORM OF THE COMPOSITION OPERATORS BETWEEN BERGMAN SPACES OF LOGARITHMIC WEIGHTS

  • Kwon, Ern Gun;Lee, Jinkee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.187-198
    • /
    • 2017
  • We obtain some necessary and sufficient conditions for the boundedness of the composition operators between weighted Bergman spaces of logarithmic weights. In terms of the conditions for the boundedness, we compute the essential norm of the composition operators.

DISJOINT SUPERCYCLIC WEIGHTED COMPOSITION OPERATORS

  • Liang, Yu-Xia;Zhou, Ze-Hua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1137-1147
    • /
    • 2018
  • In this paper, we discovered a sufficient condition ensuring the weighted composition operators $C_{{\omega}_1,{\varphi}_1},{\cdots},C_{{\omega}_N,{\varphi}_N}$ were disjoint supercyclic on $H({\Omega})$ endowed with the compact open topology. Besides, we provided a condition on inducing symbols to guarantee the disjoint supercyclicity of non-constant adjoint multipliers $M^*_{{\varphi}_1},M^*_{{\varphi}_2},{\cdots},M^*_{{\varphi}_N}$ on a Hilbert space ${\mathcal{H}}$.

A NOTE OF WEIGHTED COMPOSITION OPERATORS ON BLOCH-TYPE SPACES

  • LI, SONGXIAO;ZHOU, JIZHEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1711-1719
    • /
    • 2015
  • We obtain a new criterion for the boundedness and compactness of the weighted composition operators ${\psi}C_{\varphi}$ from ${\ss}^{{\alpha}}$(0 < ${\alpha}$ < 1) to ${\ss}^{{\beta}}$ in terms of the sequence $\{{\psi}{\varphi}^n\}$. An estimate for the essential norm of ${\psi}C_{\varphi}$ is also given.

WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.507-514
    • /
    • 2018
  • Let $\{{\varphi}_n\}_{n{\geq}1}$ be a sequence of analytic self-maps of ${\mathbb{D}}$. It is proved that if the union set of the ranges of the composition operators $C_{{\varphi}_n}$ on the weighted Bergman spaces contains the disk algebra, then ${\varphi}_k$ is an automorphism of ${\mathbb{D}}$ for some $k{\geq}1$.